
RESULTS
For validation the Collins phantom (Collins et. al. 1998) with 
di� erent noise level and inhomogeneity was used (Table 
1). Because the phantom based on a segmentation and has 
thereby a good GM-WM contrast, the results are limited to test 
segmentation stability (Table 1). Besides this we used the IBSR2 
dataset (http://www.cma.mgh.harvard.edu/ibsr/) to compare the 
method for more realistic conditions. Further single MR scans 
without ground truth segmentation were used for visual tests.

INTRODUCTION
Segmentation of brain tissue into white matter (WM), gray matter 
(GM) and cerebrospinal � uid (CSF) is an important issue for 
studying cortical morphology and brain functions (Ashburner, 
2005). After removing the noise and inhomogeneity, a Gaussian 
mixture model allows the tissue segmentation (Ashburner, 2000). 
However, even if the nonuniformity was removed completely, 
the tissue-contrast can be very poor. GM regions with high iron 
concentration, like the motor cortex and the occipital regions 
(Haacke, 2005), often have increased intensities that lead to 
misclassi� cations.
Here we present a new method that allows adaption of local 
intensity di� erences. Since these alterations happen relatively 
smooth within a tissue class, a region growing approach can 
be used to identify the segments more correctly. The extracted 
intensities a� ord corrections of the local image intensity.    

METHODS
Input is a noise- and bias-corrected image (Figure 1a), and a brain 
mask (Dahnke et al., 2011). We start with clearly classi� able regions 
that are described by low gradients and class speci� c intensities 
that are estimated by a Gaussian mixture model (Figure 1b). 

Then, a region growing that aligns voxel with similar intensity is 
used to dilate each class. A maximum distance and the speci� c 
intensities of other classes limit the region growing (Figure 1c).
Nevertheless, it is possible that two classes align the same voxel. 
Because most neighborhoods contain class speci� c voxels, a small 
overlap is unproblematic and still allows a clear separation. We 
choose a 5x5x5 voxel box neighborhood.

After � nding the major tissue segments, we can estimate the local 
intensity of each class voxel by averaging voxels of the same class 
within its neighborhood. To remove outliers only voxels within a SD 
below 80% of the maximum SD of the neighborhood are used.

As a result, each class voxel now contains the local intensity of 
its class (Figure 1d). To transfer these values to other non-class 
voxels, i.e. to get the GM value for a WM voxel, we estimate the 
hull of each class by morphological operations and set all outer 
voxels to the median class intensity. A Laplace � lter with Dirichlet 
boundary condition is used to estimate the local intensity for all 
non-class voxels within the hull (Figure 1e). To avoid hard edges 
each class image is smoothed (Figure 1f ). Finally, the input image 
T is scaled by the class maps, resulting in a map TSEG, with WM=3, 
GM=2, CSF=1, and background=0 (Figure 1g). After a second noise 
correction a CSF-GM-WM tissue segmentation with a MRF � lter 
is used to create the � nal segmentation (Figure 2).
Calculation times with skull stripping, bias- and noise-correction 
take 4 minutes without, and 5 minutes with local adaption at 
1mm resolution.
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CONCLUSIONS
We have presented a new method that allows a local adaptive 
segmentation for varying tissue contrast and a way to appraise 
the quality of the segmentation based on the contrast between 
the tissue classes.

Another similar idea of local adaptive segmentation is presented 
on poster 672 (Gaser et. al. 2012). Compared to the here 
described method, it use ROIs to locally equalize the histogram 
before segmentation. 

Although both methods show visual improvements and good 
preliminary quantitative results for the Collins Phantom and 
IBSR database, further evaluation is necessary for a detailed 
understanding of the local changes of the PVE for the GM/CSF 
and GM/WM boundaries and depending measures like cortical 
thickness.
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Furthermore, our method allows the description of local tissue 
contrast (Figure 4) that may be able to identify special regions or to 
quantify local segmentation quality. Higher segmentation errors are 
expected in regions with low contrast (red) and results have to be 
handled more carefully than for regions with good contrast (blue).

Figure 1: Main steps of the local adaptive segmentation algorithm. Initial segmentation and regions 
growing have the strongest infl uence on the fi nal result. Overlapping of different tissue classes 
is possible (i.e. in subcortical structures), but unproblematic, if happens only for small areas. To 
control the smoothness of the results, the size of the neighborhood and the fi lter size are used 
(Figure 3). The intensity distance allows quantify the result of the segmentation (Figure 4). 

Figure 2: Results of our local adaptive segmentation for 4 persons (a-d). In each subfi gure the 
top left images shows the original bias corrected image and its segmentation below, whereas 
the right side shows the intensity scaled version of the original on the top and its segmentation 
below. For all segment images (bottom of each subfi gure) and the intensity scaled image (top 
left) the colors are coded in the following way: dark red is WM, yellow is GM, cyan is CSF, and 
dark blue is background. 

Figure 3: Besides the region initialization, and region-growing parameter, the size of the neighborhood 
for the class intensity estimation and the smoothing size infl uences the results. Small neighborhoods 
(left) and low smoothing (top) lead to very hard boundaries that strongly depend on the estimated 
segments. Higher neighborhoods and higher smoothing (bottom) reduces local sensitivity a little 
bit, but helps to increase the stability.

Figure 4: Shown are the original bias corrected image (a), the intensity corrected image (b) and 
the inverted contrast map (c) that describes the contrast between the estimated tissue classes. 
Higher segmentation errors are expect in regions with low contrast (red) and results have to 
handled more carefully than for regions with good contrast (blue).

a) bias-corrected T1 b) initial segments
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Figure 1: Main steps of the local adaptive segmentation algorithm. Initial segmentation and regions growing have 
the strongest influence on the final result. Overlapping of different tissue classes is possible (i.e. in subcortical 
structures), but unproblematic, if happens only for small areas. To control the smoothness of the results, the size 
of the neighborhood and the filter size are used (Figure 3). The intensity distance allows quantify the result of the 

Figure 2: Results of our local adaptive segmentation for 4 persons (a-d). In each sub�gure the top left images shows the original 
bias corrected image and its segmentation below, whereas the right side shows the intensity scaled version of the original on 
the top and its segmentation below. For all segment images (bottom of each sub�gure) and the intensity scaled image (top left) 
the colors are coded in the following way: dark red is WM, yellow is GM, cyan is CSF, and dark blue is background. 
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dataset    Collins phantom     IBSR2
method  kappa(CSF) kappa(GM) kappa(WM) kappa(CSF) kappa(GM) kappa(WM)
SPM8  0.7683±0.0326 0.8770±0.0471 0.9000±0.0465 0.0750±0.0422 0.7492±0.1321 0.8095±0.0985
VBM8  0.7487±0.0213 0.9172±0.0231 0.9392±0.0194 0.1283±0.0446 0.7870±0.0235 0.8571±0.0213
FSL  0.7281±0.0507 0.8918±0.0618 0.9307±0.0469 0.1244±0.0461 0.7822±0.0538 0.8655±0.0259
our method 0.7491±0.0192 0.9014±0.0383 0.9362±0.0323 0.1387±0.0459 0.8328±0.0271 0.8330±0.0366

Table 1: Results of the segmentation of the Collins phantom1 with 0, 1, 3, 5, 7, 9% noise and 0, 20, 40, 80 % inhomo-
geneity, and real datasets of the IBSR2 database (http://www.cma.mgh.harvard.edu/ibsr/). 
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Figure 3: Besides the region initialization, and region-growing parameter, the size of the neighborhood for the 
class intensity estimation and the smoothing size influences the results. Small neighborhoods (left) and low smoo-
thing (top) lead to very hard boundaries that strongly depend on the estimated segments. Higher neighborhoods 
and higher smoothing (bottom) reduces local sensitivity a little bit, but helps to increase the stability.

Figure 4: Shown are the original bias corrected image (a), the intensity corrected image (b) and the inverted contrast map 
(c) that describes the contrast between the estimated tissue classes. Higher segmentation errors are expect in regions 
with low contrast (red) and results have to handled more carefully than for regions with good contrast (blue).
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Figure 2: Results of our local adaptive segmentation for 4 persons (a-d). In each sub�gure the top left images shows the original 
bias corrected image and its segmentation below, whereas the right side shows the intensity scaled version of the original on 
the top and its segmentation below. For all segment images (bottom of each sub�gure) and the intensity scaled image (top left) 
the colors are coded in the following way: dark red is WM, yellow is GM, cyan is CSF, and dark blue is background. 
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dataset    Collins phantom     IBSR2
method  kappa(CSF) kappa(GM) kappa(WM) kappa(CSF) kappa(GM) kappa(WM)
SPM8  0.7683±0.0326 0.8770±0.0471 0.9000±0.0465 0.0750±0.0422 0.7492±0.1321 0.8095±0.0985
VBM8  0.7487±0.0213 0.9172±0.0231 0.9392±0.0194 0.1283±0.0446 0.7870±0.0235 0.8571±0.0213
FSL  0.7281±0.0507 0.8918±0.0618 0.9307±0.0469 0.1244±0.0461 0.7822±0.0538 0.8655±0.0259
our method 0.7491±0.0192 0.9014±0.0383 0.9362±0.0323 0.1387±0.0459 0.8328±0.0271 0.8330±0.0366

Table 1: Results of the segmentation of the Collins phantom1 with 0, 1, 3, 5, 7, 9% noise and 0, 20, 40, 80 % inhomo-
geneity, and real datasets of the IBSR2 database (http://www.cma.mgh.harvard.edu/ibsr/). 
Table 1: Results of the segmentation of the Collins phantom¹ with 0, 1, 3, 5, 7, 9% noise and 0, 
20, 40, 80 % inhomogeneity, and real datasets of the IBSR2 database.

Preliminary results on real images indicate that the intensity 
scaling is able to improve the segmentation quality with lower 
underestimation of the GM in the motor cortex and a better 
representation of subcortical GM (Figure 2).

Figure 3 shows the impact of the neighborhood and � lter size.  
A small neighborhood and low smoothing lead to harder results, 
whereas higher values lead to smoother images with less local 
di� erences.


