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OThe early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as
in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention.
Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated
aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of
healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently
estimating the age of healthy subjects from their T1-weighted MRI scans using a kernel method for
regression. This method was tested on over 650 healthy subjects, aged 19–86 years, and collected from four
different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed.
Our age estimation framework included automatic preprocessing of the T1-weighted images, dimension
reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for
regression, and finally estimating the age of the subjects from the test samples. The framework proved to be
a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a
correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error
of 5 years. The results indicated favorable performance of the RVM and identified the number of training
samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD
resulted in a mean brain age gap estimate (BrainAGE) score of +10 years.
40

).
btained from the Alzheimer's
.loni.ucla.edu/ADNI). As such,
esign and implementation of

in analysis or writing of this
at www.loni.ucla.edu/ADNI/

lsevier Inc.

l., Estimating the age of healthy subjects fro
ers, NeuroImage (2010), doi:10.1016/j.neuro
© 2010 Published by Elsevier Inc.
4142
C
58

59

60

61

62

63

64

65

66

67

68

69

70

71
CO
RR

EIntroduction

During the normal aging process, the brain changes due to
progressive (e.g., cell growth and myelination) and regressive
neuronal processes (e.g., cell death and atrophy). Brain development
and healthy aging have been found to follow a specific pattern. Using a
semiautomated approach based on a very crude geometrical method
for the segmentation of the MRI data, Pfefferbaum et al. (1994)
showed that gray matter (GM) volume increases from birth until the
age of four and thereafter decreases continuously until subjects reach
their 70 s. White matter (WM) volume increases steadily until around
the age of 20 when it plateaus. Cerebrospinal fluid (CSF) exhibits a
complementary pattern, remaining constant until about 20 years of
age and increasing steadily thereafter (Pfefferbaum et al., 1994). A
72
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79
similar, but more recent study conducted a fully automated voxel-
based morphometry (VBM) study with 465 normal subjects aged 17–
79 years to explore global and regional effects of age (Good et al.,
2001). The results of this cross-sectional VBM study also suggested a
linear decline in GM to be predominant in normal ageing as well as a
linear increase of CSF with age. Furthermore, local areas of accelerated
GM decline and microstructural changes in WM were reported,
suggesting a heterogeneous and complex pattern of atrophy across
the adult life span (Good et al., 2001). Evidence for a region-specific
and non-linear pattern of neurodegenerative age-related changes in
GM volume was also provided by cross-sectional morphometric
analyses (Terribilli et al., 2009) as well as longitudinal data com-
parison (Resnick et al., 2003). These results support the hypothesis of
normal age-related GM decline being inversely related to the
phylogenetic origin of each respective region, with younger structures
being the last to mature as well as being more vulnerable to
neurodegeneration (see also Terribilli et al., 2009; Toga et al., 2006).

Diseases such as Alzheimer's disease (AD) or schizophrenia alter
brain structures in diverse and abnormal modes (Ashburner et al.,
2003; Meda et al., 2008). Developing a fully automated, reliable, and
sufficiently sensitive as well as specific method for the early
identification of such pathologic brain developments – even before
m T1-weighted MRI scans using kernel methods:
image.2010.01.005
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the onset of clinical symptoms – has been given great emphasis during
the last years (Ashburner, 2009; Davatzikos et al., 2009). Pathologic
brain development patterns have been explored and subsequently a
variety of classification methods have been employed to separate one
or more groups of patients from healthy controls (Davatzikos et al.,
2005, 2008a, 2008b; Fan et al., 2008a, 2008b; Klöppel et al., 2008a,
2008b, 2009; Liu et al., 2004; Teipel et al., 2007; Vemuri et al., 2008,
2009a,b). Most of these studies used a processing sequence that
started with segmenting and spatially normalizing MRI data, then
applied some kind of feature selection or dimensionality reduction
(e.g., principal component analysis (PCA)), trained a classifier based on
Support Vector Machines (SVM), and finally estimated the classifica-
tion accuracy with (jackknife) cross-validation. Typically, the sample
sizes of these classification studies were rather small, thus entailing
the risk of overfitting, which could potentially produce considerable
underperformance of the trained classifier when it is applied to a
completely new sample. In order to increase sensitivity and reliability
of the classification methods, Ashburner (2009) advocated the
initiation and usage ofmulti-scanner data sets tracking a large number
of subjects. Integrating data from different scanners in a linear SVM
classification study, Klöppel et al. (2008b) reported rates for correctly
classified AD patients versus healthy controls of around 90%. This
suggests that kernel methods like SVM have the capability to
generalize on data obtained from various scanners.

Recently, Davatzikos et al. (2009) showed the longitudinal
progression of AD-like patterns in brain atrophy in the normal aging
subjects and furthermore an accelerated AD-like atrophy in subjects
with mild cognitive impairment (MCI). These results support the
hypothesis of AD being a form of accelerated aging, implying
accelerated brain atrophy (Driscoll et al., 2009; Fotenos et al., 2008;
Sluimer et al., 2009; Spulber et al., 2008; Wang et al., 2009; for a
controversial view, see Ohnishi et al., 2001). In case of schizophrenia,
a similar hypothesis of the disease being a syndrome of accelerated
aging has been presented (Kirkpatrick et al., 2008). If these
hypotheses hold true in future research, accelerated and thus
pathologic brain atrophy should be recognizable quite early and
before the onset of clinical symptoms. In order to recognize faster
brain atrophy, a model of healthy and normal brain aging is needed. A
straightforward and efficient solution is tomodel age regression based
on normal brain anatomy such that an individual's age can be
accurately estimated from its brain scan alone.

Until recently, only a few studies were published that perform age
estimation or prediction based on MRI scans. Lao et al. (2004) tested
an SVM-based classification method by assigning their elderly
subjects into one of four age groups and reached an accuracy rate of
90%. In order to demonstrate the performance of his algorithm for
diffeomorphic image registration, Ashburner (2007) estimated the
age of subjects based on their brain images utilizing a relevance vector
machine (RVM) for regression (Tipping, 2000, 2001). As ameasure for
prediction accuracy, a root mean squared error (RMSE) of 6.5 years
was reported. Another method used quantitative brain water maps to
predict age and gender of 44 healthy volunteers aged 23 to 74 years
(Neeb et al., 2006). A linear discriminant analysis with jackknife cross-
validation for age prediction resulted in a median absolute deviation
between real and predicted age of ±6.3 years.

Although a number of approaches exist that model the pattern of
healthy neuronal aging using MRI data, to our knowledge neither the
influences of different processing parameters on age estimation were
explored, nor was it used for early detection of abnormal aging
processes. Large discrepancies between the true and estimated age
could indicate pathologic structural changes. Therefore, this work
could help to contribute to an early diagnosis and better understand-
ing of neurodegenerative diseases as well as to a more specific and
earlier intervention.

In this paper, we present a framework for automatically and
efficiently estimating the age of healthy subjects from T1-weighted
Please cite this article as: Franke, K., et al., Estimating the age of hea
Exploring the influence of various parameters, NeuroImage (2010), doi
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MRI scans using RVM-based regression. To avoid overfitting as well as
to increase sensitivity and reliability, we combine data from the IXI
database (http://fantail.doc.ic.ac.uk) and a second sample (Gaser
et al., 1999). In total, data from over 650 healthy subjects aged
between 19 and 86, collected from four different scanners, were
included. To explore the influence of various parameters on the age
estimation framework, several analyses on this large database were
conducted. We sought to identify the optimal set of processing
parameters when the age of data coming from a new scanner had to
be estimated. Another goal of this study was a comparison of the
performance of well-established SVM with RVM-based regression.
SVM require the optimization of a number of parameters (described
in more detail in the Methods section). We therefore expect RVM to
be more stable and less vulnerable to parameter selection errors than
SVM. Due to the “curse of dimensionality”, we expect the age esti-
mation to be more accurate if the dimensionality of the preprocessed
data is reduced by a dimension reduction method like PCA.

Finally, the age estimation framework will be applied to a clinical
sample from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database (www.loni.ucla.edu/ADNI), which includes T1-weighted
images of people with mild AD as well as healthy elderly control
subjects. Compared to the group of healthy subjects, we hypothesized
that the AD groupwould have a systematically larger gap between the
estimated brain age and the true age due to accelerated brain aging
that is presumed to be responsible for the diseased state.

Methods

Subjects/database

To train and test the age estimation framework with respect to
prediction accuracy and reliability, we used brain MR images of
healthy subjects from the publicly accessible IXI database (http://
fantail.doc.ic.ac.uk) and from our own sample. In February 2009, the
IXI database contained T1 images from 550 normal subjects aged 19–
86 years, which were collected on three different scanners (Philips
1.5T, General Electric 1.5T, Philips 3T). The subjects were pseudo-
randomly split into a training sample, which was used to generate the
regression models in relevance vector regression (RVR) and support
vector regression (SVR), and a test sample: after sorting the subjects
by age, every fourth subject entered the test sample. Since three
subjects, for whom no age was given, had to be excluded, the training
sample “TRAIN1-3” consisted of 410 subjects, and the first test sample
(“TEST1-3”) consisted of the remaining 137 subjects from the IXI
database, acquired on the three different scanners mentioned above.
The second test sample (“TEST4”) originally served as a control group
in a clinical study (Gaser et al., 1999). TEST4 contained T1 images from
108 healthy subjects aged 20–59 years, which were obtained on a
fourth scanner (Philips 1.5T).

The characteristics of the three groups are given in Table 1, and the
distribution of age within the training sample and both test samples
are shown in Fig. S1.

Preprocessing of structural data

Preprocessing of the images was done using the SPM8 package;
SPM 8, 2009) and the VBM8 toolbox (http://dbm.neuro.uni-jena.de).
All T1-weighted images were corrected for bias-field inhomogeneities,
then spatially normalized and segmented into GM,WM, and CSFwithin
the same generative model (Ashburner and Friston, 2005). The
segmentation procedure was further extended by accounting for
partial volume effects (Tohka et al., 2004), by applying adaptive
maximum a posteriori estimations (Rajapakse et al., 1997), and by
applying hidden Markov random field model (Cuadra et al., 2005) as
described by Gaser (2009). Only GM images were used for the TRAIN1-
3 sample and to test the age estimation model. To make this age
lthy subjects from T1-weighted MRI scans using kernel methods:
:10.1016/j.neuroimage.2010.01.005
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Fig. 1. Illustration of (a) SVR and (b) RVR (modified from Bishop, 2006, pp. 344, 349).
Data points are shown as black dots; circles indicate (a) support vectors and (b)
relevance vectors, respectively.

Table 1t1:1

Characteristics of the subjects in the training groups (TRAIN1-3) and both test samples (TEST1-3 and TEST4). TRAIN1-3 and TEST1-3 were collected from the IXI database utilizing
three different scanners, whereas the MRI data of the TEST4 sample were collected on a fourth scanner and were not used for training. The characteristics of the two groups used in
the application of the age estimation framework (AD and NO) are given in italics.

t1:2
t1:3 IXI database (scanners 1–3) Own sample (scanner 4) ADNI database

t1:4 TRAIN1-3 TEST1-3 TEST4 AD (CDR=1) NO (CDR=0)

t1:5 No. subjects 410 137 108 102 232
t1:6 Males/females 184/226 58/79 68/40 47/55 119/113
t1:7 Age mean (SD) 48.16 (16.61) 47.99 (16.66) 32.16 (9.99) 75.85 (8.25) 76.01 (5.12)
t1:8 Age range 20–86 19–83 20–59 55–88 60–90
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estimation framework fast and efficient, the images were additionally
processed with affine registration (AF) and smoothed with an 8-mm
full-width-at-half-maximum (FWHM) smoothing kernel (S8). In order
to reduce data size the spatial resolution was set to 8 mm (R8),
resulting an image size of about 3700 voxels per subject.

Furthermore – for comparison – the images were registered non-
linearly (NL), a 4-mm FWHM smoothing kernel (S4) was used, and
spatial resolution was set to 3 mm (R3) and 4 mm (R4). As non-linear
spatial normalization, the approach implemented in the New
Segment toolbox in SPM8 was used.

Data reduction

Usually, there are high spatial correlations in voxel-based
structural images, which probably lead to redundant voxels. More-
over, not every single voxel is equally relevant for age prediction.
Because of that and due to the “curse of dimensionality”, data
reduction or feature selection might be necessary to obtain mean-
ingful results from the pattern recognition analysis (Ashburner, 2009;
Duchesnay et al., 2007; Guyon and Elisseeff, 2003). Commonly, PCA is
conducted to reduce the dimensionality of the data.

Using the “Matlab Toolbox for Dimensionality Reduction” (version
0.7b; van der Maaten, 2007, 2008), PCA was applied to the
preprocessed images of the training sample. Then the two test
samples were reduced using the resulting PCA transformation.
Corresponding to the number of subjects in the training sample, the
data finally had a size of 410 principal components per subject.

Support vector regression (SVR)

The main idea behind SVMs is the transformation of training data
from input space into high-dimensional space – the feature space – via a
mapping function Φ (Bennett and Campbell, 2003; Schölkopf and
Smola, 2002). For the purpose of classification, the hyperplane that best
separates the groups is computed within this feature space, resulting in
a non-linear decision boundary within the input space. The best
separating hyperplane is found bymaximizing the margin between the
two groups. The data points lying on the margin boundaries are called
support vectors since only these are used to specify the optimal
separating hyperplane. In the case of overlapping class distributions,
some training data points are allowed to be misclassified, resulting in
some support vectors lying within the margin or on the wrong side of
the margin boundary (soft-margin classification; Bishop, 2006).

For the case of real-valued output functions (rather than just
binary outputs as used in classification), the SV algorithm was
generalized to regression estimation (Bennett and Campbell, 2003;
Schölkopf and Smola, 2002). In SVR, a function has to be found that fits
as many data points as possible. Analogous to the soft margin in
classification, the regression line is surrounded by a tube. Data points
lying within that tube do not influence the course of the regression
line. Data points lying on the edge or outside that tube are called
support vectors (Fig. 1a). The expansion of the tube can be determined
in a variety of ways, with ɛ-SVR and ν-SVR being the most common
approaches. In ɛ-SVR, the a priori specified constant ɛ defines the
Please cite this article as: Franke, K., et al., Estimating the age of hea
Exploring the influence of various parameters, NeuroImage (2010), doi
OF

width of the linear ɛ-insensitive tube around the regression line. Data
points falling within this ɛ-insensitive tube are not penalized, and are
therefore not taken as support vectors. In ν-SVR, the a priori specified
sparsity parameter ν defines the upper bound on the fraction of
support vectors, i.e., data points lying outside an ɛ-insensitive tube
that is automatically adjusted in width. To control the behavior of ɛ-
SVR and ν-SVR, the type of kernel has to be chosen, along with two
more parameters: C, which controls for model complexity, and ɛ or ν,
respectively. A short overview of SVM can be found in Bennett and
Campbell (2003). More details can be found in Bishop (2006) or
Schölkopf and Smola (2002).
lthy subjects from T1-weighted MRI scans using kernel methods:
:10.1016/j.neuroimage.2010.01.005
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Relevance vector regression (RVR)

RVMswere introduced by Tipping (2000) as a Bayesian alternative
to SVMs for obtaining sparse solutions to pattern recognition tasks.
Moreover, they do not suffer from some limitations of the SVM as
their predictions are being probabilistic rather than binary and do not
need the determination of additional parameters. In contrast to the
support vectors in SVM, the relevance vectors in RVM appear to
represent the prototypical examples within the specified classification
or regression task instead of solely representing separating attributes.

Furthermore severe overfitting associated with the maximum
likelihood estimation of the model parameters was avoided by
imposing an explicit zero-mean Gaussian prior (Ghosh and Mujum-
dar, 2008; Zheng et al., 2008). This prior is a characteristic feature of
the RVM, and its use results in a vector of independent hyperpara-
meters that reduces the data set (Faul and Tipping, 2002; Tipping and
Faul, 2003; Tipping, 2000). Therefore, in most cases the number of
relevance vectors is much smaller than the number of support vectors
(Fig. 1b).

To control the behavior of the RVR, only the type of kernel has to be
chosen. All other parameters are automatically estimated by the
learning procedure itself. More details can be found in Bishop (2006),
Schölkopf and Smola (2002), or Tipping (2000, 2001).

Computing the age estimation model

We used the freely available toolbox The Spider (Version 1.71;
Weston et al., 2006) running underMATLAB 7.4.0 to compute the final
age regression model.

The T1-weighted MRI data of the training sample TRAIN1-3 and
both test samples TEST1-3 and TEST4 were preprocessed by applying
affine registration, followed by smoothing with an FWHM kernel of
UN
CO

RR
EC

Fig. 2. Shown is an overview of the six analyses conducted within this age estimation study
registration; NL: non-linear registration; S4/S8: smoothing kernel=4mm/8 mm; R3/R4/R8
3: training sample; TEST1-3 and TEST4: test samples; RVR: relevance vector regression; SV

Please cite this article as: Franke, K., et al., Estimating the age of hea
Exploring the influence of various parameters, NeuroImage (2010), doi
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8 mm and resampling with spatial resolution of 8 mm (AF_S8_R8). The
preprocessed datawere reduced using PCA, and the RVR age estimation
model was trained using this reduced data set. The type of kernel was
set to be a polynomial of degree 1, due to its fast convergence rate. We
also tested the performance of non-linear kernels. Age estimation did
not improve (results not shown), despite adding at least one more
parameter (e.g., kernel width). Finally, the ages of the subjects in
TEST1-3 and TEST4 were estimated (Fig. 2, box ①).

To measure the accuracy of the age estimations, we used the mean
absolute error:

MAE = 1 = n4
X

i
jg0i − gi j ; ð1Þ

with n being the number of subjects in the test sample, gi the real age,
and gi′ the age estimated by the regression model. We found MAE to
be the most meaningful measure for assessing the influence of
different parameters. For comparison, the root mean squared error:

RMSE ¼ 1=n⁎
X

i
g0i−gi
� �2h i1=2 ð2Þ

as well as the correlation coefficient were calculated. Because of the
restricted age range in the sample TEST4 and a resulting underesti-
mation of the correlations between the real age and the predicted age,
the correlations were corrected following Holmes (1990).

Systematic analyses of different parameters influencing the age
estimation model

We first compared the age estimation accuracies when testing the
age estimationmodel with data from “known” scanners (i.e., TEST1-3)
versus when testing with data from a “new” scanner (i.e., TEST4; see
Fig. 2, box ①).
TE
D

to explore the influences of various parameters on age estimation accuracy (AF: affine
: spatial resolution=3mm/4 mm/8 mm; PCA: principal component analysis; TRAIN1-
R: support vector regression).

lthy subjects from T1-weighted MRI scans using kernel methods:
:10.1016/j.neuroimage.2010.01.005
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Table 2 t2:1

Performance measures of the age estimation model for TEST1-3 and TEST4. Results
indicate that the age of the healthy subjects in both test samples could be accurately
estimated from MRI scans.

t2:2
t2:3TEST1-3 TEST4 TEST1-3+TEST4

t2:4Mean absolute error (MAE) 4.61 5.44 4.98
t2:5Root mean squared error (RMSE) 5.90 6.73 6.28
t2:6Correlation (r) 0.94 0.89 0.92
t2:7Confidence interval

(at overall mean age of 41 years)
±10.7 ±11.7 ±11.5

Fig. 3. Estimated age and real age are shown for the whole test sample (TEST1-3+
TEST4) with the confidence interval (dashed lines) at a real age of 41 years of ±
11.5 years. The overall correlation between estimated and real age is r=0.92, and the
overall MAE=4.98 years.
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Secondly, in order to explore the ability to generalize across
scanners, we included data from the fourth scanner into the training
sample (see Fig. 2, box ). To test for the effect of scanners on
prediction accuracy, the whole IXI data set as well as TEST4 was
randomly and separately split into four groups. This resulted in a
training set that included 410 randomly selected subjects from
scanners 1–3 (IXI) plus 81 randomly selected subjects from scanner 4,
and a test set including the remaining 137 subjects from the IXI
sample as well as the remaining 27 subjects from scanner 4. The age
estimation framework was trained two times: In the first run, the RVR
was trained with 410 randomly selected subjects from the IXI sample
(scanners 1–3) only. Then the age of the remaining 137 subjects from
the IXI sample and of the 27 randomly selected subjects of TEST4 was
estimated. In the second run, the RVR was trained with the same 410
IXI subjects as in the first training run plus the randomly selected
training sample from TEST4. Again, age was estimated for the actual
test subjects from all four scanners. After repeating the whole
procedure 20 times, the results were averaged over the trials.

Thirdly, the influence of data reduction and different kernel
regression methods was tested (Fig. 2, box ). For comparison, the
age estimation model was also computed using ɛ-SVR and ν-SVR. As
before, a polynomial kernel of degree 1 was chosen. Here, the cost
parameter C and the width of the ɛ-tube or ν for ɛ-SVR and ν-SVR,
respectively, also have to be set. Instead of performing an exhaustive
grid search and cross-validation to find these model parameters, we
followed Cherkassky and Ma (2004) in choosing the size of the ɛ-SVR
parameters, resulting in C=98 and ɛ=0.064. With respect to ν-SVR,
we followed Chalimourda et al. (2004), resulting in C=20500 and
ν=0.54. Furthermore, we also used the default values of the toolbox
with C=1, ɛ=0.1, and ν=0.5, respectively.

Fourthly, to explore which type of preprocessing is best for age
prediction, we varied three parameters during preprocessing: (a)
affine (AF) vs. non-linear (NL) registration, (b) 4 mm (S4) vs. 8 mm
(S8) FWHM smoothing kernel, and (c) 3 mm (R3), 4 mm (R4) vs.
8 mm (R8) for spatial resolution. Memory demands forbade spatial
resolutions below 3mmwith this very large subject pool (Fig. 2, box ).

Fifthly, we analyzed the influence of the size of the training data
set (i.e., the number of subjects), comparing the full training sample
TRAIN1-3 (1/1) against half of the original training sample TRAIN1-3
(1/2) and against a quarter of the original training sample TRAIN1-3
(1/4) (Fig. 2, box ).

Finally, all the parameter variations examined before were
integrated into one analysis to assess the proportional amount of
influence of each parameter considered (Fig. 2, box ).

Application of the age estimation framework to data from
the ADNI database

To test the potential of this age estimation framework to provide
clinically relevant predictions, the age of people with early AD and
cognitively normal elderly control subjects was estimated. This test
sample incorporated MRI data obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).
The ADNI was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies, and non-profit organizations as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness as well as to lessen the time and cost of clinical
Please cite this article as: Franke, K., et al., Estimating the age of hea
Exploring the influence of various parameters, NeuroImage (2010), doi
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trials. The Principle Investigator of this initiative isMichaelW.Weiner,
M.D., VA Medical Center and University of California-San Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55 to 90 years, to
participate in the research—approximately 200 cognitively normal
older individuals to be followed for 3 years, 400 people withMCI to be
followed for 3 years, and 200 people with early AD to be followed for
2 years. For up-to-date information, see www.adni-info.org.

To compare the age estimations of people with early AD and
cognitively normal elderly subjects, two groups were formed and
analyzed using the age estimation framework. The AD group included
T1-weighted images of subjects who had a global Clinical Dementia
Rating Scale (CDR;Morris, 1993) score of 1 at baseline (n=102;mean
Mini-Mental State Examination (MMSE; Cockrell and Folstein, 1988)
score=22.87). Similarly, the group of healthy controls (NO) included
T1-weighted images of subjects who had a global CDR score of 0 at
baseline (n=232; mean MMSE score=29.10). Detailed character-
istics of both groups can also be found in Table 1.

In order to get a meaningful comparative deviation score, the
difference (or gap) between the estimated and the true age was
computed. This deviation is termed brain age gap estimation
(BrainAGE) score. The mean BrainAGE of the NO group should
consequently be zero.

Results

Performance measures

The age of healthy subjects in both test samples was accurately
estimated from their MRI scans (see Table 2), with an overall
lthy subjects from T1-weighted MRI scans using kernel methods:
:10.1016/j.neuroimage.2010.01.005

http://www.loni.ucla.edu/ADNI
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Fig. 4. To test for the effect of scanners on prediction accuracy, the IXI data set (scanners
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separately. Error bars depict the standard error of the mean (SEM).
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Fig. 5. Age estimation tended to be best when the dimensionality of the data was
reduced via PCA (solid line) and RVR was used for model calculation. With the reduced
data, the performance of ɛ-SVR and ν-SVR was not stable but depended heavily on the
choice of parameters. Error bars depict the SEM.
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correlation of r=0.92 and an MAE of just 5 years. The age prediction
tended to be slightly more accurate in TEST1-3, which consisted of
subjects scanned on the same three scanners as the subjects in the
training sample, whereas the subjects in TEST4 had been scanned on a
scanner that was not included in the training sample. The 95%
confidence interval for the prediction of age was stable along the age
range, with no broadening at old age (cf. age=20±11.6 years,
age=80±11.7 years; see Fig. 3). Furthermore, a correlation of r=
−0.015 between MAE and the true age indicated no systematical bias
in the age estimations as a function of true ages.

The results did not depend on gender in terms of MAE (5.04 years
for male, 4.92 years for female subjects) or correlation (r=0.92 for
both genders). Again, there was no correlation between estimation
accuracy and true age for either gender (male: r=0.03; female: r=
−0.05).

The most important features in the MRI data that were used by the
RVR for estimating the age are shown in the supplementary material
(Fig. S2).

Influence of different scanners

As shown in the first analysis, estimating the age from MRI scans
after training an RVR yields highly accurate predictions, even for
completely new data from another scanner. To analyze the influence
of scanners on the accuracy of age estimation, the analysis described
in the Systematic analyses of different parameters influencing the age
estimationmodel section was conducted, in which 75% of the subjects
from either scanners 1–3 only or all scannerswere used as the training
group. After averaging the results from 20 trials, no difference in
UNTable 3
Results of training and testing the age estimation model utilizing different regression metho
the best results in bold.

Sample RVR ɛ-SVR
C=98; ɛ=0.064

PCA noPCA PCA noPCA

TEST1-3 4.61 4.96 4.85 4.85
TEST4 5.44 5.57 5.42 5.51
TEST1-3+TEST4 4.98 5.23 5.10 5.14

Please cite this article as: Franke, K., et al., Estimating the age of hea
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Oestimation accuracy was found between both training runs. When
analyzing scanners separately, the accuracy of age prediction varied
only slightly between individual scanners (see Fig. 4).

Impact of regression methods and data reduction

Because ɛ-SVR and ν-SVR are kernel methods that are more
common than RVR, it is desirable to investigate the differences
between the performances of all three methods. Furthermore,
dimensionality reduction via PCA may also influence the accuracy of
age estimation.

As summarized in Table 3, age estimation tended to be more
accurate when the dimensionality of the data was reduced to 410
principal components and RVR was used for model calculation (also
see Fig. 5). On the other hand, especially when using principal
components, the performance of ɛ-SVR and ν-SVR was not stable but
depended heavily on the choice of its parameters. While using
sample-dependent parameters as proposed in Cherkassky and Ma
(2004) and Chalimourda et al. (2004), the MAEs reached up to 5 years
and thus were comparable to the MAE from the RVR model. Without
using sample-dependent parameters or performing a grid search to
find optimal parameters for ɛ-SVR and ν-SVR, but instead using the
default values (i.e., in The Spider: C=1; ɛ=0.1 and ν=0.5,
respectively), the MAE for estimating the age with reduced data
was substantially worse—scoring 8 and 9 years, respectively.

Taking a closer look at the number of principal components used in
training and testing the age estimation model (using RVR), the
accuracy continuously improved with an increasing number of
principal components, with a convergence to the smallest MAE at
about the first 350 principal components (Fig. 6). Severe overfitting
was prevented due to the inherent characteristics of RVM.
ds, each with and without dimension reduction via PCA. MAE (in years) is shown, with

ν-SVR
C=20500; ν=0.54

ɛ-SVR (default)
C=1; ɛ=0.1

ν-SVR (default)
C=1; ν=0.5

PCA noPCA PCA noPCA PCA noPCA

4.85 4.85 9.82 4.76 11.06 4.72
5.51 5.51 5.97 5.39 6.38 5.36
5.14 5.14 8.12 5.04 9.00 5.00

lthy subjects from T1-weighted MRI scans using kernel methods:
:10.1016/j.neuroimage.2010.01.005

http://dx.doi.org/10.1016/j.neuroimage.2010.01.005


OO
F

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505
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Fig. 7. Comparing the different kinds of registration (AF: affine versus NL: non-linear),
different sizes of the smoothing kernel (S4: 4 mm vs. S8: 8 mm), and different spatial
resolutions (R3: 3 mm, R4: 4 mm, R8: 8 mm), the MAE of age estimation changes only
slightly, with the most accurate age estimation obtained for affine registration and a
smoothing kernel of 8 mm (solid line). Error bars depict the SEM.
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Furthermore, training and testing the age estimation model

utilizing RVR or SVR was computationally fast, with a processing
time for training and testing the reduced data of only a few seconds on
MAC OS X, Version 10.4.11, Dual 2.5 GHz PowerPC G5 (Fig. S3).

Comparison of variations in data preprocessing (affine vs. modulated,
smoothing, and spatial resolution)

With respect to preprocessing of the MRI data, we compared
different kinds of registration (AF versus NL), different sizes of the
smoothing kernel (S4 versus S8), and different spatial resolutions (R3,
R4, and R8). The MAE of the age estimations ranged from 4.98 to
5.45 years, and the most accurate predictions occurred with affine
registration and a smoothing kernel of 8 mm. The influence of spatial
resolution was negligible (Table 4, Fig. 7).

Influence of the size of training data

Fig. 8 illustrates that the size of the training data set had a strong
effect on the accuracy of age estimation. Whereas the full data set
(n=410 subjects) produced an MAE of less than 5 years, using only
one half (n=205) or a quarter (n=103) of the training data set for
training the age estimationmodel producedMAEs of 5.2 and 5.6 years,
respectively.
UN
C

Table 4
Results of analyses with respect to registration method (AF: affine versus NL: non-
linear), size of the smoothing kernel (S4: 4mm versus S8: 8mm), and spatial resolution
(R3: 3 mm, R4: 4 mm, R8: 8 mm). Results are shown in terms of MAE (in years), and the
best results are marked in bold.

Registration NL AF

Smoothing kernel S4 S4 S8

Spatial resolution R3 R4 R8 R3 R4 R8 R3 R4 R8

TEST1-3 5.02 5.05 5.28 5.21 5.18 5.19 4.67 4.72 4.61
TEST4 4.98 4.96 5.19 5.30 5.38 5.77 5.49 5.54 5.44
TEST1-3+TEST4 5.00 5.01 5.24 5.25 5.27 5.45 5.03 5.08 4.98

Please cite this article as: Franke, K., et al., Estimating the age of hea
Exploring the influence of various parameters, NeuroImage (2010), doi
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Merging the set of all adjustable parameters and methodologies, it
can be seen in Fig. 9 that the accuracy of age estimation depended
mostly on the number of subjects used for training. The method for
preprocessing the T1-weighted MRI images also showed a strong
influence on the accuracy of age estimation, again favoring affine
registration with a broad smoothing kernel. Furthermore, reducing
the dimensionality of data via PCA also had a moderate effect on the
MAE.

Estimating the age of patients with early AD

The age estimation framework was applied to T1-weighted MRI
images of the NO group and the AD group sampled from the ADNI
database. The BrainAGE score was calculated for each subject. For the
AD group, the mean BrainAGE score was 10 years, implying a
Fig. 8. Shown is the influence of the size of trainings data set. Whereas the full data (1/1
TRAIN1-3) set produced an MAE of less than 5 years, taking only one half (1/2 TRAIN1-
3) or a quarter (1/4 TRAIN1-3) of the training data set for computing the age estimation
model produced MAEs of 5.2 and 5.6 years, respectively. Error bars depict the SEM.

lthy subjects from T1-weighted MRI scans using kernel methods:
:10.1016/j.neuroimage.2010.01.005
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systematically higher estimated than true age based on the MRI data
(see Fig. 10). This deviation was highly significant (pb0.001;
df=332).

Discussion

For estimating the age of healthy subjects from T1-weighted MRI
scans, we propose a framework that includes automatic preprocessing
of the images, dimension reduction via PCA, training of an RVM for
regression with a polynomial kernel of degree 1, and finally
estimating the age of the subjects from the two test samples TEST1-
3 and TEST4. This age estimating framework turns out to be a
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straightforward method to accurately and reliably estimate age with
as little preprocessing and parameter optimization as possible. The
additional challenge consisted of combining images from three
different scanners for training and testing with an additional testing
set from a fourth scanner not included during the training step.

Using MRI data from more than 650 healthy subjects aged
between 19 and 86 and scanned on different scanners, the age
estimation with RVR showed excellent performance for both test
samples, with an overall MAE of only 5 years and a correlation of
r=0.92 between the estimated and the real age. Although the data in
TEST4 were collected on a scanner that was not included in the
training step, the performance measures for age estimation showed
only minor differences to those of TEST1-3. We did not detect any
systematical bias in the age estimation with older age or gender.

Including data from the fourth “unknown” scanner into the
training sample did not improve the overall accuracy of age
prediction. This could be due to the age range of the samples. TEST4
comprised data from subjects aged between 20 and 59 years, which
were already frequently represented in the original training sample
TRAIN1-3. On the other hand, adding data from healthy subjects with
an age range of 60 to 90 would probably have had a stronger influence
on the performance of RVR. Thus, with respect to combining data from
different scanners, our results are in line with those of Klöppel et al.
(2008b). They indicate that the effect of scanner is sufficiently
different from that of the aging process that they could be separated
by the regression method. These encouraging results suggest this
framework as an accurate, scanner-independent, and efficientmethod
for age estimation in healthy subjects.

In RVR, the type of kernel is the only parameter that has to be
defined by the user. In contrast, in ɛ-SVR and ν-SVR, another two
parameters have to be chosen and can decrease the performance if
they are not optimized for the specific sample. Age estimation with
RVR tends to be slightly better with PCA than without. Furthermore,
using the principal components for training and testing with RVR only
needed a few seconds and thus is significantly faster than using the
full original data set (see Fig. S3).

We decided to use PCA for data reduction because of several
reasons: it is a rather simple and commonly used method, and a
number of fast implementations exist that are compatible with large
data sets. Furthermore, when testing other data reduction or feature
selection methods (e.g., Recursive Feature Elimination; Guyon et al.,
2002; Guyon and Elisseeff, 2003), we did not observe any improve-
ment in accuracy of age estimation. Also, van der Maaten et al. (2007)
reported that the results of their experiments on artificial and natural
data sets indicate no clear improvement of non-linear techniques
(for example, Isomap or Laplacian Eigenmaps and others) over
traditional PCA.

The number of training samples was found to have the strongest
influence on the accuracy of age prediction. Our results suggest that
the preprocessing of the T1-weighted MRI images can be done fairly
rapidly by performing an affine registration only with a large
smoothing kernel (e.g., 8 mm). Furthermore, given limited computing
time and memory, a coarse spatial resolution (e.g., 8 mm) can be used
without losing estimation accuracy. A dimensionality reduction of the
data can be conducted using PCA, which tends to improve the
accuracy and at the same time speeds up the computing of the RVR
model and estimating the age values of the test subjects.

Finally, our age estimation framework has the potential to provide
clinically relevant information. With a mean BrainAGE score of
+10 years, the subjects with early AD showed signs of accelerated
brain aging.

In conclusion, our age estimation framework could potentially
help to recognize or indicate faster brain atrophy before the onset of
clinical symptoms, thus contributing to an early diagnosis of
neurodegenerative diseases and facilitate early treatment or a
preventative intervention. Depending on the availability of subject
lthy subjects from T1-weighted MRI scans using kernel methods:
:10.1016/j.neuroimage.2010.01.005
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data, future explorations could include applying this framework to
other neurodegenerative diseases, evaluating the therapeutic effect of
drugs or other treatment modalities, and to predict either the severity
of symptoms or the possible rate of cognitive decline.
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