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Background: Neural development during human childhood and adolescence involves highly coordinated and se-
quenced events, characterized by both progressive and regressive processes. Despite amultitude of results dem-
onstrating the age-dependent development of gray matter, white matter, and total brain volume, a reference
curve allowing prediction of structural brain maturation is still lacking but would be clinically valuable. For the
first time, the present study provides a validated reference curve for structural brain maturation during child-
hood and adolescence, based on structural MRI data.
Methods and findings: By employing kernel regression methods, a novel but well-validated BrainAGE framework
uses the complex multidimensional maturation pattern across the whole brain to estimate an individual's brain
age. The BrainAGE framework was applied to a large human sample (n=394) of healthy children and adoles-
cents, whose image data had been acquired during the NIH MRI study of normal brain development. Using
this approach, we were able to predict individual brain maturation with a clinically meaningful accuracy: the
38

39

40

41

42

43

44

45
R
E
Ccorrelation between predicted brain age and chronological age resulted in r=0.93. The mean absolute error

was only 1.1 years. Moreover, the predicted brain age reliably differentiated between all age groups (i.e., pre-
school childhood, late childhood, early adolescence, middle adolescence, late adolescence). Applying the frame-
work to preterm-born adolescents resulted in a significantly lower estimated brain age than chronological age
in subjects who were born before the end of the 27th week of gestation, demonstrating the successful clinical
application and future potential of this method.
Conclusions: Consequently, in the future this novel BrainAGE approachmay prove clinically valuable in detecting
both normal and abnormal brain maturation, providing important prognostic information.
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Human brain development involves highly coordinated and se-
quenced events characterized by both progressive (e.g., cell growth
and myelination) and regressive (e.g., synaptic pruning) processes
(Silk and Wood, 2011). Especially with the advent of magnetic reso-
nance imaging (MRI), cross-sectional aswell as longitudinal neuroimag-
ing studies contributed to a better understanding of healthy brain
maturation. In addition,with the availability of automated computation-
al methods for analyzing MRI data, such as voxel-based morphometry
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(VBM; Ashburner and Friston, 2000), it has become feasible to quantify
and visualize structural brain changes in vivo (May, 2011) in truly
healthy children, which effectively was not possible before (Giedd et
al., 1996).

Volumetric MRI studies have reliably established the overall pattern
of an initial rapid increase in total gray matter (GM) volume, followed
by a phase of slower growth and, after reaching a peak in childhood,
by a slow but continued reduction. In contrast, total white matter
(WM) volume increases rapidly until the age of 10–15 years, with con-
tinued gain well beyond adolescence (Giedd et al., 1999; Groeschel et
al., 2010; Silk and Wood, 2011). With the growing number of studies
that have investigated both normal and abnormal brain changes with
age, most major neuropsychiatric disorders are now thought to arise
due to deviations from normal brain development during childhood
and/or adolescence (Giedd et al., 2009; Paus et al., 2008). For some of
these (e.g., childhood-onset schizophrenia or pediatric bipolar disorder),
ndividual BrainAGE in children and adolescents using structural MRI,
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early detection afforded by a brainmaturation reference curvewould be
clinically relevant.

Recently, Dosenbach et al. (2010) emphasized the need of matura-
tion curves for pediatric brain development to aid in the early detection
of neurodevelopmental disorders. They reported how brain maturity
across development can be predicted with functional connectivity
MRI (fcMRI). Using fcMRI data of 238 healthy subjects (aged 7 to
30 years), they predicted a maturation curve that accounted for 55%
of the sample variance. Given the clinical potential of such predictions,
approaches that lead to accounted variances of even more than 55%
would be highly attractive. At the same time, it would be desirable to
keep the duration of image acquisition as short as possible due to the
known difficulties of motion artifacts in pediatric MRI studies (Wilke
et al., 2008; Yuan et al., 2009).Moreover, such approacheswill maintain
a high impact on clinical diagnosis and intervention only if they are less
prone to measurement bias due to individual alertness and vigilance
(Van Dijk et al., 2012).

Focusing on these facts, our group has recently developed a new
approach based on structural MRI data that enables one to reliably es-
timate the brain age of any given subject (Franke et al., 2010). By
employing kernel regression methods in a large training database,
the complex multidimensional aging patterns across the whole
brain are detected and aggregated to one single value (i.e., the esti-
mated brain age). Consequently, although using only one MRI scan
per subject, the degree of acceleration or deceleration of brain aging
can be directly quantified in terms of years allowing a wide range of
analyses and predictions on an individual level. In an exemplary anal-
ysis with elderly adults, this brain age estimation model showed its
potential to provide clinically relevant information by reporting a sta-
tistically significant, positive deviation of 10 years between the esti-
mated and chronological ages in patients with Alzheimer's disease,
indicating accelerated brain atrophy and underlining the diagnostic
potential of such an approach.

In the present study we show the potential of our BrainAGE frame-
work to reliably predict structural maturity levels of brains from
healthy children and adolescents ranging between 5 and 18 years
based on one structural MR scan per subject. Further, the age estima-
tion framework will be exemplarily applied to a clinical sample of ad-
olescents born preterm. We hypothesize that the group with a very
low gestational age (GAb27 weeks) would have a significantly
lower estimated brain age than the group with a higher gestational
age (GA>29 weeks) due to decelerated brain maturation, which is
presumed to be caused by the extremely premature birth status.

Methods

Subjects/database

Data used in the preparation of this article were obtained from the
Pediatric MRI Data Repository created by the NIH MRI Study of Normal
Brain Development. This multisite study of typically developing chil-
dren and adolescents was conducted by the National Institute of Child
Health and Human Development, the National Institute on Drug
Abuse, the National Institute of Mental Health, and the National Insti-
tute of Neurological Disorders and Stroke (Evans, 2006).We used struc-
tural MRI data from objective 1, which included 432 healthy children
and adolescents of either sex aged 5–18 years (one T1-weighted
image per subject). As data quality interfered with data processing
(see Image processing), the data of a total of 38 subjects was excluded,
leaving a final sample of 394 subjects that were included in the present
study.

Image acquisition

Images were obtained in six different sites on 1.5 T systems from
either General Electric (GE) or Siemens Medical Systems (Siemens)
Please cite this article as: Franke, K., et al., Brain maturation: Predicting i
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using a 3D T1-weighted spoiled gradient recalled (SPGR) echo se-
quence with the following parameters: TR=22–25 ms, TE=10–
11 ms, excitation pulse=30°, refocusing pulse=180°, orientation:
sagittal, field of view: AP=256 mm; LR=160–180 mm (whole-head
coverage), and in-plane resolution=1×1×1 mm3, where the maxi-
mum number of slices on the GE scanners was 124, and hence the
slice thickness was 1.5 mm (Siemens: 1 mm).

Image processing

Preprocessing of the T1-weighted images was done using the
SPM8 package (http://www.fil.ion.ucl.ac.uk/spm) and the VBM8 tool-
box (http://dbm.neuro.uni-jena.de). All T1-weighted images were
corrected for bias-field inhomogeneities, then spatially normalized
and segmented into GM, WM, and cerebrospinal fluid (CSF) within
the same generative model (Ashburner and Friston, 2005). The seg-
mentation procedure was further extended by accounting for partial
volume effects (Tohka et al., 2004), by applying adaptive maximum
a posteriori estimations (Rajapakse et al., 1997), and by using a hid-
den Markov Random Field model (Cuadra et al., 2005), as described
previously (Gaser, 2009).

In order to avoid introducing a systematic bias into the segmentation
routine by using the standard adult reference data (Wilke et al., 2003),
the Template-O-Matic toolbox (Wilke et al., 2008) was used within
the unified segmentation framework to generate a sample-specific tem-
plate. Thus, tissue segmentation does not rely on prior information
maps, but solely on voxel intensity. This novel approach has already
demonstrated robustness of the segmentation when handling MRI
data from children (Altaye et al., 2008; Smith et al., 2011; Wilke et al.,
2008). Since the removal of the prior tissue informationmakes the algo-
rithmslightly less robustwhen confrontedwith lower quality input data
(Wilke et al., 2008), all segmentation results were screened visually by
one experienced rater (CG). The result was considered inadequate in
38 subjects.

Following the sequence proposed by Franke et al. (2010), the images
were processed with affine registration and smoothed with 8 mm
full-width-at-half-maximum (FWHM) smoothing kernels. Spatial reso-
lution was set to 8 mm. Data reduction was performed by applying
principal component analysis (PCA), utilizing the “Matlab Toolbox for
Dimensionality Reduction” (http://ict.ewi.tudelft.nl/~lvandermaaten/
Home.html).

Relevance vector regression (RVR)

Relevance vector machines (RVM) were introduced by Tipping
(2000) as a Bayesian alternative to support vector machines (SVM) for
obtaining sparse solutions to pattern recognition tasks. The main idea
behind traditional SVMs is the transformation of training data from an
input space into a high-dimensional space – the feature space – via a
mapping function Φ (Bennett and Campbell, 2003; Schölkopf and
Smola, 2002). For the purpose of classification, the hyperplane that
best separates the groups is computed within this feature space,
resulting in a nonlinear decision boundary within the input space. The
best separating hyperplane is found bymaximizing themargin between
the two groups. The data points lying on the margin boundaries are
called support vectors since only these are used to specify the optimal
separating hyperplane. For the case of real-valued output functions
(rather than just binary outputs as used in classification), the SV al-
gorithm was generalized to a regression estimation (Bennett and
Campbell, 2003; Schölkopf and Smola, 2002). In support vector regres-
sion (SVR), a function that fits as many data points as possible has to
be found. Analogous to the margin in classification, the regression line
is surrounded by a tube. Data points lying within that tube do not influ-
ence the course of the regression line. Data points lying on the edge or
outside that tube are called support vectors.
ndividual BrainAGE in children and adolescents using structural MRI,
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In contrast to the support vectors in SVM, the relevance vectors in
RVM represent the prototypical examples within the specified classifi-
cation or regression task, instead of solely representing separating attri-
butes. Furthermore severe overfitting associated with the maximum
likelihood estimation of the model parameters was avoided by impos-
ing an explicit zero-mean Gaussian prior (Ghosh and Mujumdar,
2008; Zheng et al., 2008). This prior is a characteristic feature of the
RVM, and its use results in a vector of independent hyperparameters
that reduces the data set (Faul and Tipping, 2002; Tipping, 2000;
Tipping and Faul, 2003). Therefore, in most cases the number of rele-
vance vectors is much smaller than the number of support vectors. In
SVR, some additional parameters have to be determined or statistically
optimized (e.g. with cross-validation loops) in order to control for
model complexity and model fit. To control the behavior of the RVR,
only the type of kernel has to be chosen. All other parameters are auto-
matically estimated by the learning procedure itself.More details can be
found elsewhere (Bishop, 2006; Schölkopf and Smola, 2002; Tipping,
2000).
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Estimating BrainAGE

The BrainAGE framework utilizes RVR (Tipping, 2001) and was
recently developed to estimate individual brain ages based on
T1-weighted images (Franke et al., 2010). In general, the model is
trained with preprocessed whole brain structural MRI data of the
training sample. Subsequently, the brain age of a test subject can be
estimated using the individual tissue-classified MRI data, aggregating
the complex multidimensional aging pattern across the whole brain
into one single value (Fig. 1A). The difference between the estimated
and true chronological ages will reveal the individual brain age gap es-
timation (BrainAGE) score: the closer the estimated and the chrono-
logical ages are, the smaller is this value (Fig. 1B).

Within this study, the framework was applied using the linear com-
bination of preprocessed GM andWM images. Since a leave-one-out ap-
proach is widely used in machine learning approaches and has been
shown to provide a conservative estimate of a predictor's true accuracy
(Dosenbach et al., 2010), model training and individual brain age esti-
mation were done using leave-one-out-loops (i.e., the preprocessed
GM and WM images of all subjects, except one, was used for training).
Subsequently, the brain age of the left-out subject was estimated. PCA
was performed on the training sample and the estimated parameters
were subsequently applied to the test subjects. For training the model
as well as for predicting individual brain ages, we utilized “The
Spider” (http://www.kyb.mpg.de/bs/people/spider/main.html), a freely
U
N
C
O

Fig. 1. The BrainAGE concept. A: The model of healthy brain aging is trained with preprocess
ages of previously untested subjects are estimated, based on their MRI data (red). B: The diff
sequently, negative BrainAGE scores indicate delayed brain maturation (red area). (For interp
version of this article.)
Panel A picture is modified from Schölkopf and Smola (2002).
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Statistical analysis

First, volumes of GM, WM, CSF, as well as total brain volume (TBV)
were analyzed to explore the volume changes over developmentwithin
this sample. To evaluate the accuracy of the age estimations, Pearson's
linear correlation coefficient as well as the mean absolute error (MAE)
between each subject's age and the age estimated by the regression
model was established. Then, the brain maturation curve, including
the 95% confidence interval for the prediction of brain age,was calculat-
ed using a regressionmodel with a quadratic fit. To exclude unintended
amplification effectswhile using coarse smoothing (i.e., 8 mm), training
and testing of the BrainAGE framework were repeated with GM and
WM images that were smoothed with a 4 mm FWHM smoothing ker-
nel. Again, the accuracy of the new age estimations was evaluated
using Pearson's linear correlation coefficient and MAE.

To assess the stability of BrainAGE estimation across different MRI
scanner sites, age estimation was repeated for each of the six scanner
sites separately. In other words, the BrainAGEmodel was trained with
the data of five scanner sites and then applied to the data of the one
left out in training. Pearson's linear correlation coefficient and the
MAE between each subject's chronological age and the estimated
age were calculated for each of the six scanner sites.

To exemplarily show the potential of the BrainAGE framework to
differentiate between age groups, we divided the final 394 subjects
into five age groups; each group spanned three consecutive years of
age (Table 1). That is, preschool childhood (5–7 years), late childhood
(8–10 years), early adolescence (11–13 years), middle adolescence
(14–16 years), and late adolescence (17–19 years). The estimated
brain ages as well as the volumes of GM, WM, CSF, and TBV were
compared between these five age groups using analysis of variance
(ANOVA). Post-hoc analyses (with Bonferroni adjustment to compen-
sate for multiple comparisons) were conducted to explore significant
group differences (pb0.05).

To further show the potential of the BrainAGE estimation frame-
work with respect to modeling healthy brain maturation, receiver op-
erating characteristics (ROC) for discriminating children (5–10 years)
from adolescents (13–18 years) were computed for estimated brain
age, GM volume, WM volume, CSF volume, and TBV, in order to dem-
onstrate whether the brain age score adds information above and be-
yond that derived from tissue volumes alone. All statistical testing
was performed using MATLAB.
ed structural MRI data of a training sample (green). Subsequently, the individual brain
erence between the estimated and chronological age results in the BrainAGE score. Con-
retation of the references to color in this figure legend, the reader is referred to the web

ndividual BrainAGE in children and adolescents using structural MRI,
1
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Table 1t1:1

Subject demographics and between-group differences (NIH normal brain development sample).
t1:2
t1:3 Preschool childhood Late childhood Early adolescence Middle adolescence Late adolescence F p

t1:4 Age range (years) 5–7 8–10 11–13 14–16 17–19 – –

t1:5 Number of subjects 126 97 77 60 34 – –

t1:6 Males/females 68/58 54/43 38/39 29/31 18/16 – –

t1:7 GM volume (ml) 745.9 747.7 738.5 718.7 680.0 8.5 b0.001
t1:8 WM volume (ml) 469.5 490.4 514.3 538.5 537.1 18.4 b0.001
t1:9 CSF volume (ml) 145.5 157.3 161.5 177.3 188.9 28.3 b0.001
t1:10 TBV (ml) 1360.9 1395.4 1414.3 1434.5 1406.0 4.6 b0.01
t1:11 Estimated brain age (years) 6.99 9.61 12.28 15.09 16.32 439.9 b0.001

Table 2 t2:1

Subject demographics (preterm-born adolescents).
t2:2
t2:3Gestational ageb27 weeks Gestational age>29 weeks

t2:4Number of subjects 10 15
t2:5Mean (SD) age at

gestation (weeks)
25.4 (0.8) 30.3 (0.7)

t2:6Mean (SD) age at MR
scan (years)

14.3 (1.4) 14.7 (1.5)
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Exemplary application of the BrainAGE framework to clinical data

To exemplarily show the potential of the BrainAGE framework to
provide clinically relevant information, the age of adolescents born
very preterm and with extremely low birth weight (i.e., before the be-
ginning of the 33rd week of gestation and weighing b1500 g) was esti-
mated. Prematurity is known to be a considerable risk factor for later
developmental disabilities (Allen, 2008) and was chosen here as a
model for an early interference with normal brain development. The
MR data was acquired on a 1.5 T Siemens Avanto Scanner (Siemens
Medizintechnik, Erlangen, Germany), using a 12-channel head coil. A
T1-weighted 3D-data set (MPRAGE, TR=1300 ms, TE=2.92 ms, 176
contiguous slices with an in-plane matrix of 256×256, yielding a
voxel size of 1×1×1 mm3) was acquired. Parallel imaging was not
used.

The age estimation model was trained with all 394 subjects from
the NIH sample. Subsequently, the brain ages of the preterm-born ad-
olescents were estimated. As described above, for each subject in the
training set as well as in the test set the linear combination of
preprocessed GM and WM images was used. PCA was performed on
the training sample and the estimated parameters were subsequently
applied to the test sample. The resulting BrainAGE scores were com-
pared between those subjects who were born before the end of the
27th week of gestation (GAb27; n=10) versus those who were
born after the end of the 29th week of gestation (GA>29; n=15),
using Student's t-test. To evaluate the accuracy of the age estimations
in both groups, Pearson's linear correlation coefficient between the
chronological and estimated ages and MAE (after adjusting the esti-
mated ages to a zero mean) were calculated. Detailed characteristics
of both groups can be found in Table 2.

Results

Within our test sample of 394 healthy children and adolescents,
aged 5–18 years (mean age=10.7 years; SD=3.9 years), the devel-
opmental changes with respect to GM, WM, CSF, and TB volumes
are comparable to those reported in the literature (Giedd et al.,
1999; Giedd et al., 2009; Groeschel et al., 2010; Silk and Wood,
2011). More specifically, while the trajectory of GM volume exhibits
an inverted U-shape, WM volume increases steadily with age (Fig. 2).

The correlation between the estimated age and true age was r=
0.93 (pb0.001). Thus, 87% of variance between the chronological
age and the age estimated based on structural MRI was explained.
The MAE was 1.1 years. As shown in Fig. 3, the 95% confidence inter-
val for the prediction of brain age (±2.6 years) was stable across the
entire age range. To exclude unintended amplification effects while
using coarse smoothing, training and testing of the BrainAGE frame-
work were repeated with images that were smoothed with a 4 mm
FWHM smoothing kernel. However, prediction accuracy remained
stable (r=0.93; MAE=1.2 years).

Since multivariate pattern recognition techniques such as RVR are
able to use the whole pattern in the brain image as well as inter-
regional dependencies, the multidimensional maturation pattern used
for brain age estimation was widespread across the whole brain. For
Please cite this article as: Franke, K., et al., Brain maturation: Predicting i
NeuroImage (2012), http://dx.doi.org/10.1016/j.neuroimage.2012.08.00
E
D
 P

R
O

O
F

an exemplary illustration, the most important features (i.e., the impor-
tance of voxel locations for regression with age) that were used by the
RVR are shown in Fig. S1 for GM and Fig. S2 for WM.

When the BrainAGE model was trained with the data of five MRI
scanner sites and then applied to the one left out in training, estima-
tion accuracy proved to remain stable across all scanner sites. The cor-
relations between the chronological and estimated ages ranged
between r=0.90 and r=0.95 (pb0.001). The MAEs ranged between
1.1 and 1.3 years (Table 3).

When exemplarily comparing the five predefined age groups (i.e.,
preschool childhood, late childhood, early adolescence, middle ado-
lescence, and late adolescence), the estimated brain ages differed be-
tween the age groups (F=439.9; pb0.001; Table 1), with post-hoc
t-tests resulting in differences (pb0.05) between all five age groups
(Fig. 4). For volumes of GM, WM, CSF, and TBV the ANOVA also
resulted in significant differences (Table 1), but post-hoc t-tests did
not result in differences between all of the five age groups.

Based on these encouraging results, we conducted an additional
ANOVA to explore group differences with respect to estimated brain
ages between neighboring ages (i.e., 5-years old vs. 6-years old, etc.).
Again, the results showed differences in estimated brain ages between
neighboring age groups (F=208.9; pb0.001; Fig. S3), suggesting the
existence of specific, and therefore identifiable, age-dependent brain
maturation patterns.

Binary classification of individuals as either children (aged 5–
10 years) or adolescents (aged 13–18 years), based on their estimated
brain age, was 97% accurate (sensitivity=98%, specificity=96%). The
area under the ROC curve (AUC), which is also known as the
c-statistic or c-index, shows the quality of the classification, with 1.0 in-
dicating a perfect discrimination and 0.5 indicating a result obtained by
chance only. As demonstrated in Fig. 5, AUC was 0.996 when discrimi-
nating children and adolescents using the estimated brain ages. In con-
trast, when using CSF volume to classify individuals as either children or
adolescents, the accuracy ratewas 73% andAUCwas 0.78. Other param-
eters were even less sensitive (i.e., accuracy: GM volume=63%; WM
volume=72%; TBV=59%; AUC: GM volume=0.65; WM volume=
0.74; TBV=0.61).

Finally, the BrainAGE framework was exemplarily applied to struc-
tural MRI data of preterm-born adolescents, aged between 12 and
16 years at the time of theMR scan. The BrainAGE scores differed signif-
icantly (pb0.01; df=23) between group GAb27 (i.e., subjects who
were born before the end of the 27th week of gestation) and group
GA>29 (i.e., subjects who were born after the end of the 29th week
of gestation) and revealed the following means (SD): GAb27=−1.96
ndividual BrainAGE in children and adolescents using structural MRI,
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Fig. 3. Estimated brain maturation using BrainAGE. Individual structural brain age
based on anatomical T1-images of 394 healthy subjects (aged 5–18 years). Chronolog-
ical age is shown on the x-axis and the estimated brain age on the y-axis. The 95% con-
fidence interval of the quadratic fit is stable across the age range (±2.6 years).

Fig. 2. Brain tissue and brain volume trajectories across development. The change of individual tissue volumes across development with 95% confidence intervals (light lines) of the
quadratic fits (bold lines) for GM (A), WM (B), CSF (C), and TBV (D).
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difference in the gestation age between both groups was only 5 weeks,
these results show a systematically and dramatically lower BrainAGE
score in the group of adolescents who were born extremely preterm,
implying delayed brain maturation.

In both groups, prediction accuracy was high resulting in correla-
tion coefficients between the estimated and chronological ages of r=
0.89 (pb0.001) and r=0.75 (pb0.01) for the groups GAb27 and
GA>29, respectively. After adjusting the estimated ages to a zero
mean, MAE would result in 0.5 years and 1.1 years, respectively.
Again the BrainAGE framework proved to provide reliable estimations
even with entirely new data that differed from the training data by
scanner and by scanning parameters.

Discussion

The present study provides a sensitive and easy-to-use reference
curve for structural brain maturation during childhood and adoles-
cence. The novel BrainAGE concept adopted here combines the com-
plex multidimensional maturation pattern across the whole brain
into one single value. Using structural MRI data of 394 healthy sub-
jects (aged 5 to 18 years) acquired on six different scanners, we pre-
dicted a maturation curve that accounted for 87% sample variance.
Furthermore, a strong stability of the estimated brain ages across dif-
ferent MRI scanner sites was demonstrated. The framework showed
exemplary predictive value, classifying individuals as children (age
range 5–10 years) or adolescents (age range 13–18 years) with 97%
accuracy. Moreover, the predicted brain age demonstrated its poten-
tial to differentiate between all age groups (i.e., preschool childhood,
late childhood, early adolescence, middle adolescence, and late ado-
lescence) and even between neighboring ages. Finally, the BrainAGE
Please cite this article as: Franke, K., et al., Brain maturation: Predicting i
NeuroImage (2012), http://dx.doi.org/10.1016/j.neuroimage.2012.08.00
framework exemplarily showed its potential to provide clinically rel-
evant information. With a mean difference in BrainAGE scores of −
1.6 years between the early preterms and the late preterms, the ado-
lescents who were born extremely preterm showed clear signs of
delayed brain maturation.
ndividual BrainAGE in children and adolescents using structural MRI,
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Table 3t3:1

Stability of BrainAGE estimation across different MRI scanner sites. The model was trained with the data of five scanner sites and then applied to the one left out in training (test
sample).

t3:2
t3:3 Scanner site (as test sample)

t3:4 1 2 3 4 5 6

t3:5 Scanner GE Genesis Signa GE Genesis Signa GE Genesis Signa GE Genesis Signa Siemens Sonata Siemens Magneton Vision
t3:6 Number of subjects 53 76 71 75 48 70
t3:7 Age range (years) 4.8–17.8 4.8–18.5 5.1–18.6 4.8–18.0 5.0–17.8 6.2–18.4
t3:8 Mean (SD) age (years) 10.7 (4.0) 10.5 (3.8) 11.8 (4.1) 10.4 (4.0) 9.8 (3.8) 10.8 (3.4)
t3:9 r 0.95 0.92 0.92 0.93 0.91 0.90
t3:10 MAE (years) 1.1 1.2 1.3 1.2 1.3 1.2
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Several structural MRI studies of brain maturation have already
shown the age-dependent development of a variety of brain measures
in children and adolescents. Although the human brain has reached
95% of its maximum size by the age of six, the cortical and subcortical
components of the brain still change dramatically during childhood
and adolescence (Lenroot and Giedd, 2006). While GM volumes follow
regionally-specific inverted U-shaped developmental curves, with vol-
umes peaking at different times across the different lobes, WM volume
changes were thought to be more linear and less variant across regions
(Giedd et al., 1999; Lenroot and Giedd, 2006). Recently, Lebel and
Beaulieu (2011) showed significant nonlinear development trajectories
also for WM, with maturation being complete by late adolescence for
projection and commissural tracts, but association tracts maturing
well beyond adolescence. Furthermore, GM andWMdevelopment dur-
ing childhood and adolescence appeared to reveal regionally specific,
age-dependent variations (Wilke and Holland, 2003). Taken together,
brain maturation is not only a very complex multidimensional but
also a highly variable process. In the light of the multitude of these
brain changes, it is remarkable that the confidence interval does not
change substantially as a function of age, underlining the potential of
the approach to correctly capture the multidimensional characteristics
of the different maturational processes occurring in this age range.

In their groundbreaking study, Dosenbach et al. (2010) already em-
phasized the need ofmaturation curves for pediatric brain development
to aid in the early detection of neurodevelopmental disorders. For ex-
ample, childhood-onset schizophrenia was found to show a similar
but abnormally accelerated pattern as seen during normal brain ma-
turation (i.e., accelerated GM loss in a characteristic back-to-front
(parieto-frontal–temporal) direction during adolescent years (Gogtay
et al., 2004; Gogtay and Thompson, 2010; Thompson et al., 2001)).
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Fig. 4. Age group differentiation using BrainAGE. Mean of estimated brain ages by
predefined age groups. Error bars depict the standard error of the mean (SEM).
Post-hoc t-tests resulted in significant differences between all five age groups
(pb0.05; red lines). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Interestingly though, these accelerated GM deficits are not likely to be
the result of WM overgrowth because WM growth itself was shown
to be decelerated by about 2% in patients with childhood-onset schizo-
phrenia compared to healthy controls (Gogtay et al., 2008; Gogtay and
Thompson, 2010; Paus et al., 2001).

Using only one structuralMR image per subject, thematuration curve
predicted by the BrainAGE framework accounted for 87% of the sample
variance and proved its potential to recognize delayed brain maturation
in a clinical sample. Hence, our novel BrainAGE framework is a valuable
complement to Dosenbach's maturation index of functional connectivity
that accounted for 55% sample variance (Dosenbach et al., 2010). It is
conceivable that the combination of structural and functional image
data might achieve an even higher accuracy, although the required
multidimensional dataset from each subject would constitute a clear
drawback. Importantly, structural MRI is already the imaging modality
of choice in most centers and especially with children. Moreover, struc-
tural imaging avoids the possible bias due to individual differences in
alertness and vigilance, a severely confounding factor when using func-
tional MRI (Van Dijk et al., 2012). Luckily, given the novel results of the
BrainAGE algorithm, the aforementioned need for multidimensional
data is no longer pressing.

An additional challenge when establishing a clinically valuable
reference curve for structural brain maturation is developing an algo-
rithm, which allows combining MRI data from different scanners.
When applying the estimation procedures to MRI data from a scan-
ner, which was not included during the training of the algorithm,
the BrainAGE framework demonstrated strong stability of the esti-
mated brain age (r=0.90–0.95). Even with entirely new data that
differed from the training data not only by scanner but also by scan-
ning parameters, the BrainAGE framework proved to provide reliable
estimates plus clinically valuable information. Thus, our results are in
line with those of Klöppel et al. (2008), indicating that the effect of
the scanner parameters is sufficiently different from that of the
aging process and that linear RVR generalizes well across different
scanners.

However, given the nature of data included in this study, our con-
clusions are limited to MRI data obtained with 1.5 T field strengths.
As already shown previously (Franke et al., 2010), numerous vari-
ables have the potential to influence the accuracy of age prediction,
such as the number of subjects constituting the training sample
(which added most on variability), various parameters pertaining to
data acquisition (e.g., field strength, scanning sequence) and data
preprocessing (e.g., registration, smoothing), as well as the chosen
approach to reduce data dimensionality (e.g. PCA). Therefore, these
aforementioned aspects need to be carefully controlled in future
studies. Future work will further explore the influences of varying pa-
rameters in data acquisition on prediction accuracy.

In order to facilitate usability in a clinical routine, the algorithm
should work fast and fully automatic. As already indicated in Franke
et al. (2010), a fairly rapid preprocessing of the MRI data can be
achieved by performing affine registration with a large smoothing
kernel (e.g., 8 mm). Even in estimating the brainmaturation in children
and adolescents a coarse spatial resolution (e.g., 8 mm) can be used
without losing estimation accuracy. Unlike approaches that make use
ndividual BrainAGE in children and adolescents using structural MRI,
1
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Fig. 5. ROC curves of subject classification using BrainAGE. ROC curves of individual
subject classification as either children (aged 5–10 years) or adolescents (aged
13–18 years) based on estimated brain age (red; AUC=0.99), GM volume (dark
blue; AUC=0.65), WM volume (light blue; AUC=0.74), and TBV (green; AUC=
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Fig. 6. BrainAGE scores in preterm-born adolescents. Shown are box plots with
BrainAGE scores (in years) for those adolescents who were born before the end of
the 27th week of gestation (mean=−2.0) vs. those who were born after the end of
the 29th week of gestation (mean=−0.4). The gray boxes contain the values between
the 25th and 75th percentiles of the samples, including the median (dashed line). Lines
extending above and below each box symbolize data within 1.5 times the interquartile
range (outliers are displayed with a +). The width of the boxes depends on the sample
size. Student's t-test resulted in a significant difference between both groups (pb0.01;
red lines). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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of specified regional information, multivariate pattern recognition tech-
niques, such as RVR, are fully automatic and make use of the whole pat-
tern in the brain image (see also Klöppel et al., 2008). Additionally,
inter-regional dependencies are taken into account (Bishop, 2006;
Schölkopf and Smola, 2002), such as the widespread microstructural
changes inWM, which were recently found to be associated with corre-
sponding age-related changes in cortical GM regions in adolescents
(Giorgio et al., 2010; Giorgio et al., 2008).Whenmodeling brainmatura-
tion within the BrainAGE approach, the multidimensional maturation
pattern used for brain age estimation was also found to be widespread
across the whole brain, including increases as well as decreases.

Directly quantifying the degree of acceleration or deceleration of
brain maturation in terms of years, adopting our novel BrainAGE con-
cept will allow a wide range of analyses and predictions to aid in the
early detection of neurodevelopmental disorders on an individual
level. With significantly lower BrainAGE scores in adolescents who
were born preterm, the present study additionally demonstrated the
potential of the BrainAGE framework to recognize neurodevelopmental
delays. Besides, the potential to provide clinically relevant information
was already shown previously by reporting a positive deviation be-
tween estimated and chronological age of about 10 years in patients
with Alzheimer's disease, indicating accelerated brain atrophy (Franke
et al., 2010). In the future, applying the BrainAGE framework to clinically
relevant samples as well as tracking the performance of our age estima-
tionmodel with follow-upMRI datamay further elucidate the prognos-
tic value of the BrainAGE score.

However, it should be noted, that the BrainAGE approach was
implemented to model “normal” structural brain maturation or brain
aging (Franke et al., 2010). Therefore, and in this stage of model devel-
opment, the application to clinical samples is only recommended if the
underlying disease is likely a result of overall deceleration or accelera-
tion of brain maturation or brain aging, such as observed in subjects
with developmental delays (Harbord et al., 1990; McLaughlin et al.,
2010; Ramenghi et al., 2011; Verbruggen et al., 2009), schizophrenia
(Kirkpatrick et al., 2008), or Alzheimer's disease (Cao et al., 2010;
Driscoll et al., 2009; Dukart et al., 2011; Jones et al., 2011; Saetre et al.,
2011; Spulber et al., 2010). Future work will extend the current ap-
proach to allow identifying significant regional deviations from the
expected age-specific pattern in order to provide region-specific infor-
mation as a basis for further clinical applications.
Please cite this article as: Franke, K., et al., Brain maturation: Predicting i
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To summarize, we demonstrated the potential of the BrainAGE
framework to reliably predict brainmaturity in children and adolescents
and to provide a clinically sensitive as well as easy-to-use reference
curve of healthy brainmaturation.Wehave also shown that thismethod
can be used across different scanners (see also Franke et al., 2010),
which is an important prerequisite for use in clinical routines. Given
that the BrainAGE framework is validated as well as fast and easy to
use, this method holds great potential for application in daily clinical
routine, especially since brain imaging has become part of the standard
diagnostic work-up for many developmental neuropsychiatric disor-
ders. Nevertheless, combining different imaging techniques holds the
potential to further improve existing analysis streams (e.g. Dosenbach
et al., 2010; Franke et al., 2010), and combining structural and functional
connectivity imaging may reveal a valuable biomarker in the future to
guide early detection in the prodromal phase of diseases.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.08.001.
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