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Structural neuroimaging studies have reported a variety of brain
alterations between groups of obsessive–compulsive disorder (OCD)
patients and healthy controls. However, the large heterogeneity in
discrete anatomical measures that exists among patients prevents a
clear discrimination of single patients from healthy subjects. This
reduces the potential clinical applicability of structural neuroimaging
studies. In the present study we assessed the feasibility of identifying
OCD patients on the basis of whole-brain anatomical alterations.
Whole-brain magnetic resonance images were collected from two
consecutive samples of OCD outpatients (n=72 and n=30), and
control subjects (n=72 and n=30). We computed the whole-brain
(voxel-wise) pattern of structural difference between OCD patients
and control subjects at the group level. A single expression value of this
difference pattern was calculated for each subject, expressing their
degree of ‘OCD-like’ anatomical alteration. Accuracy of patient
classification based on these expression values was assessed using two
validation approaches. Firstly, using a cross-validation method, we
obtained a high classification accuracy (average of the sensitivity and
specificity indices) of 93.1%. In a second assessment, which classified
new groups of OCD patients and control subjects, overall accuracy was
lower at 76.6%. Individual expression values for OCD patients were
significantly correlated with overall symptom severity as measured by
the Y-BOCS scale. Our results suggest that OCD patients can be
identified on the basis of whole-brain structural alterations, although
the accuracy of our approach may be limited by the inherent
variability of psychiatric populations. Nevertheless, the anatomical
characterization of individual patients may ultimately provide the
psychiatrist with relevant biological information.
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Introduction

Reports of altered brain structure are common in magnetic
resonance imaging (MRI) studies of obsessive–compulsive
disorder (OCD) (Rauch and Baxter, 1998; Saxena et al., 1998).
Although some variability exists among studies focusing on
particular regions of interest (ROIs), including several null reports
(Aylward et al., 1996; Bartha et al., 1998; Kellner et al., 1991;
Riffkin et al., 2005; Stein et al., 1997), significant volumetric
alterations have been described in different cortical and subcortical
structures, such as the basal ganglia (Giedd et al., 2000; Robinson
et al., 1995; Rosenberg et al., 1997; Scarone et al., 1992; Szeszko
et al., 2004a), thalamus (Atmaca et al., 2006; Gilbert et al., 2000),
orbitofrontal cortex (Atmaca et al., 2006; Choi et al., 2004; Kang et
al., 2004; Szeszko et al., 1999), amygdala (Kwon et al., 2003;
Szeszko et al., 1999, 2004b), or the cerebellum (Jenike et al.,
1996). Importantly, this wide distribution of volumetric changes
described by ROI studies has since been confirmed in studies using
voxel-based morphometry (VBM) (Kim et al., 2001; Pujol et al.,
2004; Valente et al., 2005), a structural MRI analysis technique that
permits systematic assessments of the entire brain on a voxel-by-
voxel basis (Ashburner and Friston, 2000). Since VBM studies, by
virtue of their automated nature, can facilitate assessments of large
MRI series of patients and control subjects, they appear to be more
suitable for characterizing structural brain anomalies occurring
with the highest prevalence in OCD patients (Pujol et al., 2004).

Despite the increasing interest in volumetric MRI studies of
psychiatric patients, it is important to recognize that neither analysis
approach described above, ROI or VBM, is intended as a patient
classification or diagnostic tool, as they describe anatomical
differences which are suitable for interpretations at the group, or
population, level (Friston and Ashburner, 2004). Identification of
gross anatomical anomalies in specific patients is uncommon, and
typically a large overlap exists between patient and control groups in
each discrete (e.g., voxel-by-voxel) anatomical measure (Davatzi-
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kos, 2004). As a consequence, the information obtained from
neuroimaging studies is rarely used in a clinical context and
contributes little to patient management. Nevertheless, it is possible
that a clearer discrimination between groups may be obtained if
analyses were not based on discrete anatomical measurements, but
rather, on the whole-brain pattern of abnormalities. Such a method
could ultimately provide the clinician with the opportunity of
classifying subjects on the basis of a relevant (anatomically
informed) source of information.

The aim of this study was to assess the feasibility of classifying
single subject cases of MRI data as OCD patients or healthy
controls using their whole-brain anatomy. Specifically, we sought
to characterize each subject with a single value that reflected the
extent of expression of the whole-brain pattern of anatomical
abnormalities depicted by the OCD group. This pattern was
computed through an optimized VBM analysis of our large MRI
series of OCD patients and matched control subjects (Pujol et al.,
2004). The accuracy of this classification approach was then
evaluated by using a cross-validation method, and also with an
independent set of data of newly recruited OCD patients and
control subjects.

Materials and methods

Subjects

In total, 204 subjects were included in the study. An initial
sample of 72 OCD patients and 72 control subjects was used to
develop the whole-brain classification scheme that will be detailed
below. This sample, referred to here as the original sample, has
been previously described (Pujol et al., 2004), and included OCD
patients and control subjects who were matched for age, gender
and handedness. In the current study, we also recruited a second
(new) sample of 30 OCD patients and 30 control subjects. Subjects
from both OCD subgroups were community outpatients consecu-
tively recruited when two psychiatrists (P.A. and J.M.M.), who
independently assessed the patients, agreed on their diagnosis.
Exclusion criteria included a history of relevant medical illness, or
any neurological or other psychiatric diseases. No patient met the
criteria for Tourette’s syndrome or had a recent history of
psychoactive drug use/abuse. Comorbid anxious and depressive
symptoms were not considered as an exclusion criterion, provided
that OCD was the primary clinical diagnosis. Table 1 summarizes
the sociodemographic characteristics of the two study samples, and
Table 2 presents the primary clinical features of OCD patients. All
Table 1
Sociodemographic characteristics of the study samples

Sociodemographic variable a Original sample

OCD (n=72) Contro

Mean (SD), range Mean (

Age (years) 29.8 (10.5), 18–60 30.1 (1
Education (years) 13.2 (3.6), 8–17 14.0 (3

N (%) N (%)

Gender distribution (females) 32 (45.7) 32 (45.
Handedness (lefthanders) 11 (15.3) 11 (15.

OCD, obsessive–compulsive disorder.
a No significant differences were observed between groups in any of the variab
subjects gave written informed consent to participate in this study,
following a complete description of the protocol, which was
approved by the Institutional Review Board of the University
Hospital of Bellvitge, Barcelona.

MRI acquisition and processing

A 1.5-T magnet (Signa, GE Medical Systems, Milwaukee, WI)
was used to obtain a sixty-slice 3D spoiled gradient-recalled
acquisition sequence in the sagittal plane (TR 40 ms, TE 4 ms, pulse
angle 30°, field of view 26 cm, matrix size 256×192 pixels, and
section thickness between 2.4 and 2.6 mm). Imaging data were then
transferred and processed on aMicrosoftWindows platform running
MATLAB version 6.5 (The MathWorks Inc., Natick, MA) and
Statistical Parametric Mapping software (SPM2; The Wellcome
Department of Imaging Neuroscience, London, England). Image
preprocessing was based on the optimized procedure for structural
neuroimaging data (including the creation of a customized template)
(Good et al., 2001), which was automated with two freely available
MATLAB scripts (cg_create_template and cg_vbm_optimized, see
http://www.dbm.neuro.uni-jena.de/vbm/). After tissue segmenta-
tion, we focused our whole-brain structural imaging analysis on
subjects’ segmented gray matter volumes, informed by our previous
results (Pujol et al., 2004). Importantly, in order to preserve
volumetric information, the last step of the preprocessing consisted
in the modulation of voxel values by the Jacobian determinants
derived from the normalization step. All resulting gray matter
volumes were then smoothed with a small isotropic kernel of 4 mm
(Salmond et al., 2002). Final voxel values ranged between 0 and 1. A
detailed description of the procedure can be found elsewhere (Pujol
et al., 2004).

Statistical analyses

Calculation of the whole-brain pattern of differences and
individual expression values

Neuroimaging studies using whole-brain patterns of between-
group differences for patient classification purposes have normally
used multivariate statistical methods based on Singular Value
Decomposition (SVD) for pattern characterization (Kawasaki et al.,
2007; Kerrouche et al., 2006; Meyer-Lindenberg et al., 2001;
Scarmeas et al., 2004). However, in the case of a single comparison
between two groups, as in the present study, the pattern of whole-
brain differences characterized with a univariate approach (and its
statistical significance), is identical to the one obtained with
Newly recruited sample

ls (n=72) OCD (n=30) Controls (n=30)

SD), range Mean (SD), range Mean (SD), range

0.2), 18–57 31.9 (9.3), 18–63 31.8 (10.2), 18–63
.1), 8–17 12.2 (2.9), 5–17 13.1 (3.2), 8–17

N (%) N (%)

7) 9 (30.0) 14 (46.7)
3) 2 (6.7) 3 (10.0)

les.

http://www.dbm.neuro.uni-jena.de/vbm/


Table 2
Clinical characteristics of the OCD patients

Clinical variable Original sample (n=72) Newly recruited sample (n=30) Statistical value a

(P value b)
Mean (SD), range Mean (SD), range

Age at onset of OCD (years) 17.0 (5.9), 6–40 19.7 (6.1), 7–36 2.35 (0.03)
Duration of illness (years) 13.0 (10.5), 1–51 11.3 (9.4), 1–39 −0.99 (0.33)
Y-BOCS score (global) 26.7 (7.1), 7–38 21.0 (5.7), 10–32 −5.44 (<0.001)
Y-BOCS score (obsessions) 13.7 (3.4), 6–19 10.9 (3.1), 6–17 −5.02 (<0.001)
Y-BOCS score (compulsions) 13.0 (4.8), 0–19 10.1 (3.0), 1–16 −5.25 (<0.001)

OCD symptoms c 0 (Absent) 1 (Mild) 2 (Prom) 0 (Absent) 1 (Mild) 2 (Prom)

N (%) N (%) N (%) N (%) N (%) N (%)

Symmetry and ordering 50 (69.4) 12 (16.7) 10 (13.9) 20 (66.7) 1 (3.3) 9 (30.0) 8.84 (0.01)
Hoarding 56 (77.8) 11 (15.3) 5 (6.9) 15 (50.0) 10 (33.3) 5 (16.7) 13.50 (0.001)
Contamination and cleaning 41 (56.9) 14 (19.4) 17 (23.6) 16 (53.3) 5 (16.7) 9 (30.0) 0.70 (0.70)
Aggressive and checking 23 (31.9) 19 (26.4) 30 (41.7) 6 (20.0) 8 (26.7) 16 (53.3) 2.31 (0.32)
Sexual and religious obsessions 55 (76.4) 4 (5.6) 13 (18.1) 23 (76.7) 3 (10.0) 4 (13.3) 1.41 (0.49)

Comorbid diagnoses Mean (SD), range Mean (SD), range

HAM-D score at inclusion 12.7 (5.4), 2–26 11.9 (5.1), 4–25 −0.88 (0.39)
HAM-A score at inclusion 13.3 (6.6), 0–30 14.5 (4.9), 6–25 1.25 (0.22)

N (%) N (%)

Significant history of depression 26 (36.1) 4 (13.3) 6.74 (0.01)
Significant history of anxiety 19 (26.4) 7 (23.3) 0.14 (0.70)

Treatment status Mean (SD), range (median) Mean (SD), range (median)

Cumulative SRIs treatment (months) 41.0 (62.5), 0–396 (24.0) 19.6 (20.5), 0–97 (14.6) −5.73 (<0.001)
Previous SRI trials completed N (%) N (%) 1.21 (0.75)

Never treated 5 (6.9) 2 (6.7) …
One SRI trial 19 (26.4) 6 (20.0) …
Two SRI trials 21 (29.2) 8 (26.7) …
Three or more SRIs trials 27 (37.5) 14 (46.7) …

Stable medication at time of the MRI N (%) N (%) 4.05 (0.40)

Medication-free (>4 weeks) 18 (25.0) 4 (13.3) …
Clomipramine hydrochloride 25 (34.7) 9 (30.0) …
Fluoxetine or fluvoxamine maleate 13 (18.1) 7 (23.3) …
Phenelzine sulfate 2 (2.8) 1 (3.3) …
Clomipramine with fluoxetine 14 (19.4) 9 (30.0) …

HAM-A, Hamilton Rating Scale for Anxiety.
HAM-D, Hamilton Rating Scale for Depression.
MRI, magnetic resonance imaging.
OCD, obsessive–compulsive disorder.
SRI, serotonin reuptake inhibitors.
Y-BOCS, Yale–Brown Obsessive–Compulsive Scale.
a Newly recruited sample compared to (reference) original sample (one-sample t test for continuous variables, χ2 test for categorical variables).
b Two-tailed.
c Dimensions from Mataix-Cols et al. (1999). A score of 2 (prominent) was allowed for more than 1 dimension.
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multivariate methods based on SVD (Worsley et al., 1997).
Consequently, we performed a voxel-wise univariate statistical
analysis to characterize the whole-brain pattern of differences
between the two study groups.

As depicted in Fig. 1, the method for calculating this whole-
brain pattern and individual expression values can be summarized
in two basic analysis steps. Firstly, using SPM2, we calculated a
whole-brain image of between-group differences (represented by
the univariate t statistic) by contrasting, voxel-by-voxel, the
preprocessed gray matter volumes of the original sample of 72
OCD patients and 72 control subjects (Fig. 1A). In the second step,
this resulting t map was multiplied by the gray matter image of
each subject to obtain their individual expression values (Fig. 1B).
Both analysis steps are explained in more detail below.

Step 1:Within the general linear model framework implemented
in SPM2, we calculated a voxel-wise t statistic image which
expressed the areas of significant regional difference in gray matter
volume between OCD patients and control subjects. This t statistic
map was designed specifically to represent the areas of increase (i.e.,
positive t values) and decrease (i.e., negative t values) of regional
gray matter volume in OCD patients versus control subjects. In the
calculation of this difference map, we covaried for subjects’ age as a



Fig. 1. Schematic illustration of the method developed to obtain the expression values of individual subjects. (A) Calculation of the whole-brain pattern of
structural differences between groups. (B) Calculation of individual expression values.

1031C. Soriano-Mas et al. / NeuroImage 35 (2007) 1028–1037
confounding variable. To control for any global differences in gray
matter volume, data were proportionally scaled to a grand mean of
100. To assess the global significance of the pattern of differences we
used the omnibus mean sum of squares test (Worsley et al., 1995).
This can be defined as S=∑t2/N, where the summation of the square
of the t value calculated over all voxels is divided by the total number
of voxels N. This test allowed for the rejection of the null hypothesis
that no significant between-group differences in entire gray matter
volume existed between groups, without localizing such differences.
Omnibus significance testing can then be approximated with a χ2

distribution (Worsley et al., 1995).
Step 2: To obtain each subject’s individual expression value of

the pattern described above, we individually computed the scalar
product of the gray matter image by the t map of between-group
differences. That is, we multiplied each voxel of the individual gray
matter images by the voxel’s relevance in between-group
discrimination. These voxel values were then added up, sum-
marizing the anatomical features of each subject into a single value
that represented the extent to which they expressed the pattern of
anatomical differences characterized at the group level. Subjects
showing a large gray matter volume in voxels with positive values
in the tmap, and relatively small gray matter volume in voxels with
negative t values (i.e., OCD patients) were expected to display
positive expression values. Conversely, subjects with the inverse
pattern of gray matter distribution (i.e., control subjects) were
expected to display negative expression values.

Because the current analysis strategy that we used to calculate
gray matter volumes differences between OCD patients and control
subjects (i.e. Step 1) was similar to our previous VBM study of the
same subjects (Pujol et al., 2004), we expected strong overlap of
the patterns of volumetric differences described in each study (see
Results section). The major differences between studies with
respect to the new analysis employed here involved the use of
SPM2 normalization and segmentation algorithms (versus
SPM99), as well as spatial smoothing with a smaller Gaussian
kernel (4 mm versus 12 mm), which increased the number of
independent elements available for calculating individual expres-
sion values. In addition, to satisfy the aims of the new analysis, a
single design matrix was constructed, which specified that global
gray matter volume was accounted for both in the calculation of
volumetric decreases and increases. In the previous study, two
design matrices were constructed and global gray matter volume
was only controlled in the description of volumetric increases (see
Pujol et al., 2004).

Subject classification

To make subject classifications, we first calculated the mean
expression value for the two groups of the original sample, OCD
patients (n=72) and control subjects (n=72). Next, we calculated
the two distances (Euclidean) between each subject’s individual
expression value and each group’s mean expression value. These
two distances were then converted to complementary probabilities
of being an OCD patient (P-OCD=1−distance to the OCD mean /
distance to the OCD mean + distance to the control mean) or a
control subject (P-Control=1−distance to the control mean /
distance to the OCD mean + distance to the control mean). OCD
patients were considered to be misclassified when P-OCD was
smaller than P-Control, that is, less than 0.5, and vice versa.

We validated our classification approach in two ways. Firstly, we
conducted a cross-validation study with the leave-one-out method
(a.k.a. jackknife approach). This was performed by omitting one
subject at a time from the original study sample and then computing
a new t map (Step 1 above) from the remaining sample (143
subjects). The expression value (Step 2) and classification (P-OCD
and P-Control) for this left-out-subject were then calculated. This
process was repeated 144 times, accounting for all subjects.

Secondly, we performed an ‘independent set of data’ analysis to
evaluate the rate of misclassification of a new sample of OCD
patients (n=30) and control subjects (n=30). The classifications for
this new cohort were obtained by calculating subjects’ individual
expression values (Step 2 above) against the group difference
pattern extracted from the original sample (n=144).

In both validation studies, the predictive power of our
classification tool was determined by calculating the sensitivity
(i.e., the conditional probability that a case X was correctly
classified as an OCD patient) and specificity (i.e., the conditional
probability that a case X was correctly classified as a control
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subject) values. Overall classification accuracy was then calcu-
lated as the average of these two values.

Analysis of sociodemographic and clinical variables

Potential differences in the sociodemographic characteristics of
patient and control groups of both samples were assessed using
Student’s t and χ2 tests. Sociodemographic and clinical values of
the sample of newly recruited subjects were compared with those
of the original sample by means of the one-sample t and χ2 tests
(see Tables 1 and 2).

We also conducted Pearson’s correlation analyses between
subjects’ individual expression values and the continuous clinical
and sociodemographic variables of interest, including subjects’
age, duration of illness, cumulative use of serotonin reuptake
inhibitors (SRI), comorbid anxious and depressive symptoms
(Hamilton scores), and OC-symptom severity (Y-BOCS scores).
Differences in individual expression values between subgroups of
patients in terms of gender, major OC-symptom dimensions,
previous SRI trials completed, and stable medication use at time of
MRI, were assessed using Student’s t test and one-way ANOVAs.
The above analyses were performed using SPSS version 12.0.

Results

Table 1 summarizes the sociodemographic characteristics of
both study samples. No significant differences were observed in any
of the variables between the groups of OCD patients and control
subjects in either of the samples. Similarly, sociodemographic
Fig. 2. Illustration of the whole-brain pattern of differences between groups. The n
(MNI) space.
characteristics of the newly recruited groups of OCD patients and
control subjects did not significantly differ with respect to the
original sample. Table 2 summarizes the major clinical character-
istics of both groups of OCD patients. It can be seen that the new
sample of patients differed significantly from the original cohort on
8 of the 17 clinical variables measured (see Table 2 for details).

The omnibus mean sum of squares test (described in Step 1
above) indicated that the whole-brain pattern of anatomical
differences between the original groups of control subjects and
OCD patients was globally significant (S=1.75, P<0.0001). The
most relevant features of this pattern are depicted in Fig. 2. As
anticipated, the primary regions of difference between OCD
patients and control subjects (i.e., gray matter volume increases
and decreases) closely resemble those described in our previous
study of these subjects (Pujol et al., 2004). To summarize here,
significant volumetric decreases in OCD patients were observed in
the medial wall of the prefrontal lobe, the posterior cingulate–
precuneus region, the cerebellar tonsils, and the posterior insula
bilaterally. Significant volumetric increases in OCD patients were
observed primarily in subcortical regions, including ventral
striatum bilaterally, the posterior thalamus, the anterior cerebellum,
and the medial midbrain.

To test the accuracy of our subject classification pattern, we first
carried out a cross-validation assessment on the original sample.
From this analysis, we obtained a high rate of correct subject
classification, expressing a sensitivity index of 91.7% and a
specificity index of 94.4%. The overall rate of classification
accuracy was 93.1% (see Fig. 3). This analysis was repeated
including only the most extreme 30% of positive and negative
umbers refer to the x coordinate in standard Montreal Neurological Institute



Fig. 4. Probability of being an OCD patient for the newly recruited subjects
based on their expression values of the pattern extracted from the original
sample.
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voxel loadings of the t map. The result of this approach was a
lower classification accuracy of 79.9%, with a sensitivity and
specificity values of 75.0% and 84.7%.

In the subsequent, ‘independent set of data’ analysis, we then
sought to assess the predictive power of the classification approach
by repeating the same classification procedure on a new sample of
OCD patients and control subjects. As shown in Fig. 4, the
sensitivity and specificity values obtained from this assessment
were somewhat lower, at 70% and 83.3%, respectively. Overall
accuracy from this second analysis was 76.6%.

We also examined for potential associations between clinical
and sociodemographic variables and individual expression values.
Patients’ overall severity of symptoms (total Y-BOCS score)
showed a positive correlation with individual expression values,
being this association slightly stronger in the new sample of OCD
patients (r=0.45, P<0.05; see Fig. 5) than in the original sample
(r=0.23, P<0.05). In a post hoc analysis, however, a statistical
comparison of the strength of these correlation coefficients
showed no significant differences in their magnitude (z=1.11,
P>0.05).

Finally, although in the previous analyses we did not find any
association between gender and individual expression values, we
conducted an additional post hoc assessment to evaluate the
influence of this relevant variable. Between-group difference
patterns were again extracted, but for male and female subjects
separately. Compared to results obtained from the whole sample, we
obtained a better classification accuracy in these gender-specific
cross-validation assessments (males: overall accuracy=98.8%,
sensitivity=97.5%, specificity=100%; females: overall accu-
racy=100%, sensitivity=100%, specificity=100%). Accordingly,
we also performed the same gender-specific classification on the
new sample of OCD patients and control subjects. For male subjects,
the sensitivity of this classification was reduced to 57.1% (9 out of
21 patients misclassified), while the specificity was higher, at 81.2%
(3 out of 16 controls misclassified). Interestingly, 7 of the 9 OCD
patients and 2 of the 3 controls misclassified by this analysis were
also misclassified in the original ‘independent set of data’
assessment. Female OCD patients from the new sample were
classified with a sensitivity of 77.8% (2 out of 9 patients mis-
classified, 1 patient also misclassified in the original analysis), while
Fig. 3. Probability of being an OCD patient for the subjects of the original
sample after cross-validation following the leave-one-out method.
new female control subjects were classified with a specificity of
85.7% (2 out of 14 controls misclassified, both of themmisclassified
in the original analysis).

Discussion

Magnetic resonance imaging studies employing voxel-wise
analysis methods have reported significant structural brain
alterations in OCD, including both increases and decreases of
gray matter volume in distributed cortical and subcortical regions
(Kim et al., 2001; Pujol et al., 2004; Valente et al., 2005).
Methodologically, these analyses operate by collecting volumetric
data from every single voxel in the brain, where group differences
can be assessed throughout the entire cerebrum in a relatively
automated fashion (Ashburner and Friston, 2000). Potential
differences are then computed and a voxel-by-voxel statistical
map of this comparison is generated (usually a Student’s t test),
where the highest (and lowest) values correspond to the brain
Fig. 5. Expression of the pattern (mean centered) plotted against the Y-
BOCS score in the newly recruited group of OCD patients (r=0.45,
P=0.013).
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regions showing most alteration. However, these estimated
volume values using voxel-wise assessments typically display a
large overlap between groups of patients and control subjects
(Davatzikos, 2004), making the identification of single OCD
patients based on discrete voxel measurements rarely feasible.

In this study, contrary to the above notions, we tested the
feasibility (and accuracy) of identifying OCD patients using a
whole-brain pattern of anatomical alteration characterized by an
optimized voxel-wise analysis of our large MRI series of patients
and control subjects (Pujol et al., 2004). We calculated a between-
group difference image (voxel-wise, t statistic) by comparing the
gray matter volumes of an initial group of 72 OCD patients and
72 control subjects, and then used this resulting t map of
structural alterations to obtain individual expression values for
the gray matter volumes of each subject. We use the term
“expression value” because this single metric represents the
extent to which each individual subject expressed the global
pattern of anatomical differences between groups, that is, the
degree of “OCD-like” anatomical abnormality in a particular
subject. These expression values may ultimately provide the
psychiatrist with relevant biological information, especially when
considering the relatively high level of accurate identifications
that were generated in the validation assessments performed in
the current study.

We validated the accuracy of our approach by performing two
validation assessments with independent samples of OCD patients
and control subjects. Our initial cross-validation assessment of the
original sample yielded a 93.1% accuracy rating, which is
encouraging, considering the large variability observed in the
volumetric measures of psychiatric populations in structural
neuroimaging studies. Interestingly, this accuracy was reduced
when the pattern of alterations was limited to the most relevant
voxels, suggesting that a whole-brain approach may be more optimal
for the anatomical characterization of this disorder. However,
because OCD is a clinical heterogeneous condition (Mataix-Cols
et al., 2005), we also sought to assess how representative our
classification approach was in a new set of OCD patients. To do so,
we performed an ‘independent set of data’ test, which showed a
reduced overall level of accuracy of individual classifications
(76.6%) compared to the cross-validation assessment. This 16.5%
decrease in accuracy between the two validations might be
explained by the inherent statistical properties of each approach.
The leave-one-out method is a very reliable estimator of the
predictive power of a classifier, whereas the ‘independent set of
data’ test has greater external and ecological validity, but depends
critically on sample selection, yielding markedly different results
with different sample selections (Chou and Zhang, 1995). In the
clinical research, it is rarely possible to access a full population for
random selection, and, typically, patients are recruited for research
studies when they contact the health care system (Aitken et al.,
2003). Although in our case the recruitment of OCD patients was
made by the same psychiatrists using equivalent procedures, the
clinical heterogeneity of the disorder and the recruitment of patients
at two separate time points resulted in some differences in the
clinical features of the samples (e.g., severity of the disorder, or
history of depression, see Table 2). One parsimonious interpreta-
tion, therefore, is that the clinical differences between the original
and the newly recruited sample may have led to a lower
classification accuracy in the ‘independent set of data’ test. To
increase sample homogeneity in future studies, analyses might be
restricted to particular subsets of patients, such as severe patients,
or patients without certain comorbidities that may affect brain
anatomy (i.e., depression and other anxiety disorders). However,
these approaches may ultimately reduce the generalizability of
findings.

Gender-specific analyses were found to improve classification
accuracy in the separate cross-validation assessments of male and
female sub-groups. To some extent, this may be interpreted as a
secondary validation of our classification method. These results
also suggest a degree of sexual dimorphism in the anatomical
alterations of OCD, in line with known gender effects that have
been described in the clinical expression and genetic susceptibility
to this disorder (Arnold et al., 2006; Bogetto et al., 1999; Lensi et
al., 1996; Lochner et al., 2004). However, this result should be
interpreted cautiously, as we did not observe any gender-specific
anatomical alterations in our previous study of these patients (Pujol
et al., 2004). Unlike the original study sample, the classification of
new subjects did not benefit to the same extent when using such
gender-specific patterns. Most of the subjects misclassified in the
whole-sample analysis were also misclassified in the gender-
specific analyses indicating that, in this case, misclassification was
not attributable to gender differences.

Given the above results, it is important to emphasize that we do
not consider that diagnosis of OCD can be made on the basis of a
structural MRI examination. It seems that the accuracy of our
classification approach will be inevitably influenced by different
sources of patient heterogeneity. It is of special relevance, however,
that the individual expression values of OCD patients (indicating
relative severity of brain structural alterations), showed a sig-
nificant positive correlation with patients’ symptom severity.
Although a greater expression of the pattern cannot be auto-
matically associated with a more severe form of OCD, this
suggests that underlying neuroanatomical alterations are indeed
related to the overt clinical expression of the disorder. Further
studies are needed to determine whether the joint use of anatomical
and psychometric data may be useful in classifying particular
subgroups of OCD patients, for example, based on primary
symptom clusters as opposed to overall illness severity.

There are a number of considerations that may enhance the
clinical relevance of our approach. For instance, if the progressive
(Pujol et al., 2004), reversible (Gilbert et al., 2000), or reactive
(Giedd et al., 1996) nature of some of the structural alterations of
OCD was confirmed, pattern classifications could be used as an
indicator of disease progression or stabilization. The potential
clinical use of an approach such as ours would also be strengthened
if a degree of discriminant validity with other psychiatric disorders
was demonstrated. Similarly, if images acquired from different
scanners could be analyzed in combination, multi-site clinical
applications would be possible, facilitating the development of
shared databases. However, site-specific image distortions also
pose a major problem when seeking to make accurate comparisons
of data from different scanners. Although some correction methods
for these distortions (Jovicich et al., 2006), as well as some
segmentation algorithms invariant to details of image acquisition
(Fischl et al., 2002), have been proposed, a reliable method for
performing multi-center VBM studies has not been developed yet.
Nevertheless, observations from our laboratory using images of 9
OCD patients and 17 control subjects acquired from three different
scanners (with identical parameters) suggest that multi-center
classification accuracy of our method may be around 70%, i.e., less
accurate than the ‘independent set of data’ test in the current study,
but well above chance levels.
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Our method follows the standard preprocessing steps imple-
mented in VBM studies and uses a voxel-wise statistical mapping
approach to calculate the pattern of between-group differences.
Consequently, in this study, the nature of anatomical differences
closely resembles the results of our previous VBM study of the
original subject sample (Pujol et al., 2004). However, there are some
minor differences between the two sets of findings, which are likely
to be explained by the subtle differences in methodology described
earlier. Additionally, our display of the whole-brain anatomical
pattern of differences (Fig. 2) uses an arbitrary threshold of the most
extreme 30% positive and negative voxel loadings, as opposed to a
threshold dictated by voxel-wise statistics. As a result, certain
regions, including the right posterior insula, the posterior cingulate–
precuneus region, and the medial midbrain, now emerged as part of
the difference pattern, whereas in our previous report they only
showed a tendency towards significant alteration (Pujol et al.,
2004).

Though largely restricted to neurological disorders, other
approaches for patient classification with brain MRI have been
developed with the intent of extending the clinical utility of
neuroimaging studies. For example, the measurement of selected
ROIs has been used to inform the diagnosis and clinical staging of
neurodegenerative diseases (Laakso et al., 2000; Wolf et al., 2001),
and VBM studies have characterized individual brains of
neurological patients in relation to a population of reference
(Gitelman et al., 2001; Mummery et al., 2000; Wilke et al., 2003;
Woermann et al., 1999). However, in general, such classifications
are likely to meet with less success when applied to psychiatric
disorders, considering the high clinical heterogeneity that often
exists between patients (Mataix-Cols et al., 2005). Similarly, in
anatomical terms, structural brain abnormalities are also typically
more variable and distributed in psychiatric groups, and thus,
subtle alterations occurring in one individual patient may not be
compelling when compared to a population of reference. Our
notion is that the relevance of such subtle individual alterations
could be enhanced if considered as part of an extended pattern of
characteristic abnormality, which is variably expressed across
subjects. In methodological terms, the use of high-resolution
images with small smoothing kernels may be better suited for
accurately characterizing such disease-associated patterns. Con-
sidering this, the relatively large slice thickness of images used in
the current analysis may be one limitation of our study.

The use of whole-brain patterns of between-group differences
for subject classification purposes has been previously reported,
although, contrary to the present approach, within a multivariate
statistical framework (Kawasaki et al., 2007; Kerrouche et al.,
2006; Meyer-Lindenberg et al., 2001; Scarmeas et al., 2004).
However, as discussed in the Materials and methods section,
differences between univariate and multivariate approaches based
on Singular Value Decomposition are only likely to arise when
more than two study groups are involved (Worsley et al., 1997).
Nevertheless, when combined with high-dimensional brain map-
ping techniques, multivariate statistics may offer the possibility of
analyzing some morphometrical characteristics, such as shape, that
have been reported to possess greater discriminative power than
volumetric data (Csernansky et al., 1998; Posener et al., 2003).
Davatzikos et al. (2005), for instance, used such an approach and a
non-linear discrimination function to anatomically differentiate
schizophrenia patients from control subjects, obtaining a classifi-
cation ratio quite similar to the one reported here. However, in a
practical sense, these methods require significantly more computa-
tional time and effort than the relatively straightforward approach
described here.

In summary, we present a method for summarizing brain
anatomical alterations of particular patients, demonstrated here in
OCD, with regards to a reference pattern of abnormality that exists
at the population level. While the application of this method has
currently been restricted to MRI scans acquired with the same
machine, the possibility of using multi-center image databases
remains open and may further advance the general utility of this
approach towards a valuable neuroimaging aid for patient
management.
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